首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodopseudomonas capsulata cells were shifted from phototrophic (anaerobic, light) to chemotrophic (semiaerobic, dark, 10% air saturation) growth conditions. During the adaptation period of 4 h, the bacteriochlorophyll content of cells and membranes decreased, and a newly synthesized 65-kilodalton polypeptide of the cytochrome oxidase was incorporated into the membrane fraction. The enzymatic activity of the cytochrome oxidase increased strongly after a lag time of 2 h. The amount of cytochrome oxidase protein does not follow the same kinetics. The relative amount of a membrane-bound cytochrome c of low molecular weight, which has been proposed to be a donor for the cytochrome oxidase, increased during adaptation.  相似文献   

2.
A facultative methylotroph, Protaminobacter ruber was grown under two different conditions (aerobically grown under light, and aerobically in the dark after a light period). Bacteriochlorophyll was synthesized inducibly in the cells which were initially grown in the ligt and then grown in the dark, while bacteriochlorophyll was not found in the cells cultured under continuous light. Cytochrome c-554 was solely synthesized parallel to bacteriochlorophyll after switching from light to dark conditions. Both cytochrome c-554 and bacteriochlorophyll levels in the membrane preparation reached to a plateau in 24 h after switching from light and dark conditions. This cytochrome was membrane-bound and its M r was 45,000 by sodium dodecylsulfate polyacrylamide gel electrophoresis. The midpoint potential was 358 mV at pH 7. Other major membrane-bound cytochromes and two soluble cytochromes were present in both types of cells and their content did not change irrespective of growth conditions.Abbreviations SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - Bchl bacteriochlorophyll  相似文献   

3.
M Madigan  J C Cox    H Gest 《Journal of bacteriology》1982,150(3):1422-1429
The phototrophic bacterium Rhodopseudomonas capsulata can obtain energy for dark anaerobic growth from sugar fermentations dependent on accessory oxidants such as trimethylamine-N-oxide or dimethyl sulfoxide. Cells grown for one to two subcultures in this fashion, with fructose as the energy source, showed approximately a twofold increase in bacteriochlorophyll content (per milligram of cell protein) and developed extensive intracytoplasmic membranes in comparison with cells grown photosynthetically at saturating light intensity. Cells harvested from successive anaerobic dark subcultures, however, showed progressively lower pigment contents. After ca. 20 transfers, bacteriochlorophyll and carotenoids were barely detectable, and the amount of intracytoplasmic membrane diminished considerably. Spontaneous mutants incapable of producing normal levels of photosynthetic pigments arose during prolonged anaerobic dark growth. Certain mutants of this kind appear to have a selective advantage over wild-type cells under fermentative growth conditions. Of four pigment mutants characterized (two being completely unable to produce bacteriochlorophyll), only one retained the capacity to grow photosynthetically.  相似文献   

4.
5.
By means of sucrose density centrifugation three membrane fractions, named light, medium and heavy have been isolated from cells of Rhodopseudomonas capsulata strain 37b4, adapting from chemotrophic to phototrophic growth conditions. Succinate dehydrogenase activity of aerobically grown cells was mainly confined to the heavy (chromatophore) fraction. Upon changing to phototrophic conditions the activity of the succinate dehydrogenase increased in the medium and light fraction. All fractions contain bacteriochlorophyll. NADH dehydrogenase of chemotrophically grown cells was enriched in the light and medium fraction but is increased in the heavy fraction under phototrophic growth conditions. The capacity of photophosphorylation is high in the light and heavy fraction. The results indicate a differentially incorporation of functional subunits into specific parts of the membrane system during membrane differentiation.Abbreviations Bchl bacteriochlorophyll - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD N,N-dicyclohexyl carbodiimide  相似文献   

6.
Cells of Rhodospirillum rubrum were grown photoorganotrophically and chemoorganotrophically and then starved for organic carbon and combined nitrogen under four conditions: anaerobically in the light and dark and aerobically in the light and dark. Illumination prolonged viability and suppressed the net degradation of cell material of phototrophically grown cells, but had no effect on chemotrophically grown cells that did not contain bacteriochlorophyll. The half-life survival times of carbohydrate-rich phototrophically grown cells during starvation anaerobically or aerobically in the light were 17 and 14.5 days, respectively. The values for starvation aerobically and anaerobically in the dark were 3 and 0.5 days, respectively. Chemotrophically grown cells had half-life survival times of 3 and 4 days during starvation aerobically in the light and dark, respectively, and 0.8 day during starvation anaerobically in the light or dark. Of all cell constituents examined, carbohydrate was most extensively degraded during starvation, although the rate of degradation was slowest for phototrophically grown cells starved anaerobically in the light. Phototrophically grown cells containing poly-beta-hydroxybutyrate as carbon reserve were less able to survive starvation anaerobically in the light than were carbohydrate-rich cells starved under comparable conditions. Light intensity had a significant effect on viability of phototrophically grown cells starving anaerobically. At light intensities of 320 to 650 lx, the half-life survival times were 17 to 24 days. At 2,950 to 10,500 lx, the survival times decreased to 1.5 to 5.5 days. The kinetics of cell death correlated well with the rate of loss of cell mass of starving cells. However, the cause of death could not be attributed to degradation of any specific cell component.  相似文献   

7.
For three species of anoxygenic phototrophic alphaproteobacteria differing in their reaction to oxygen and light, physiological characteristics (capacity for acetate assimilation, activity of the tricarboxylic acid (TCA) cycle enzymes, respiration, and the properties of the oxidase systems) were studied. Nonsulfur purple bacteria Rhodobacter sphaeroides, Rhodobaca bogoriensis, and aerobic anoxygenic phototrophic bacteria Roseinatronobacter thiooxidans were the subjects of investigation. All of these organisms were able to grow under aerobic conditions in the dark using the respiratory system with cytochrome aa 3 as the terminal oxidase. They differed, however, in their capacity for growth in the light, bacteriochlorophyll synthesis, and regulation of activity of the TCA cycle enzymes. Oxygen suppressed bacteriochlorophyll synthesis by Rha. sphaeroides and Rbc. bogoriensis both in the dark and in the light. Bacteriochlorophyll synthesis in Rna. thiooxidans occurred only in the dark and was suppressed by light. The results on acetate assimilation by the studied strains reflected the degree of their adaptation to aerobic growth in the dark. Acetate assimilation by light-grown Rha. sphaeroides was significantly higher than by the dark-grown ones. Unlike Rha. sphaeroides, acetate assimilation by Rbc. bogoriensis in the light under anaerobic and aerobic conditions was much less dependent on the growth conditions. Aerobic acetate assimilation by all studied bacteria was promoted by light. In Rha. sphaeroides, activity of the TCA cycle enzymes increased significantly in the cells grown aerobically in the dark. In Rbc. bogoriensis, activity of most of the TCA cycle enzymes under aerobic conditions either decreased or remained unchanged. Our results confirm the origin of modern chemoorganotrophs from anoxygenic phototrophic bacteria. The evolution from anoxygenic photoorganotrophs to aerobic chemoorganotrophs included several stages: nonsulfur purple bacteria → nonsulfur purple bacteria similar to Rbc. bogoriensis → aerobic anoxygenic phototrophs → chemoorganotrophs.  相似文献   

8.
Rhodopseudomonas viridis was grown in liquid culture at 30 degrees C anaerobically in light (generation time, 13 h) and under microaerophilic growth conditions in the dark (generation time, 24 h). The bacterium could be cloned at the same temperature anaerobically in light (1 week) and aerobically in the dark (3 to 4 weeks) if oxygen was limited to 0.1%. Oxygen could not be replaced by dimethyl sulfoxide, potassium nitrate, or sodium nitrite as a terminal electron acceptor. No growth was observed anaerobically in darkness or in the light when air was present. A variety of additional carbon sources were used to supplement the standard succinate medium, but enhanced stationary-phase cell density was observed only with glucose. Conditions for induction of the photosynthetic reaction center upon the change from microaerophilic to phototrophic growth conditions were investigated and optimized for a mutant functionally defective in phototrophic growth. R. viridis consumed about 20-fold its cell volume of oxygen per hour during respiration. The MICs of ampicillin, kanamycin, streptomycin, tetracycline, 1-methyl-3-nitro-1-nitrosoguanidine, and terbutryn were determined.  相似文献   

9.
Growth, bacteriochlorophyll a content, electron transport chain (ETC), and activities of the tricarboxylic acid (TCA) cycle enzymes were studied in R and M phase variants of Rhodobacter sphaeroides cells grown anaerobically in the light and aerobically in the dark. Under all cultivation conditions tested, bacteriochlorophyll a content was 2–3 times lower in the cells of the M variant compared to the R variant, which therefore was predominant in the cultures grown in the light. In both variants, activity of all TCA cycle enzymes was higher for the cells grown in the dark under aerobic conditions. When grown aerobically in the dark, the R variant, unlike the M variant, did not contain cytochrome aa 3, acting as cytochrome c oxidase, in its ETC. An additional point of coupling the electron transfer to the generation of the proton gradient at the cytochrome aa 3 level provided for more efficient oxidation of organic substrates, resulting in predominance of the M variant in the cultures grown in the dark under aerobic conditions.  相似文献   

10.
Aerobically in the dark grown cultures of Rhodopseudomonas capsulata were shifted to low oxygen partial pressure for 30 min and afterwards to phototrophic conditions (anaerobic, light). During 210 min of adaptation to a phototrophic mode of life the bacteriochlorophyll (BChl) concentration increased 53-fold (doubling time 40 min) and the carotenoid content six fold. Growth was delayed. The light membrane fraction from chemotrophic and induced phototrophic cells contained low concentrations of small photosynthetic units (reaction center+light harvesting BChl B870), and low respiratory activities, especially of succinatecytochrome c oxidase. The heavy membrane fraction, i.e. the intracytoplasmic chromatophore fraction, increased during adaptation approximately 9-fold in surface area per cell, 42-fold in BChl content, 7-fold in reaction center content and 6-fold in the size of the photosynthetic unit.Phospholipid and fatty acid content and patterns changed slightly during adaptation.Non-standard Abbreviations BChl bacteriochlorphyll - R. Rhodopseudomonas  相似文献   

11.
A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only under anaerobic conditions. Protocatechuate and catechol were neither utilized nor detected as metabolic intermediates during the metabolism of these aromatic compounds under both aerobic and anaerobic conditions. Cells grown anaerobically on one of these aromatic compounds also utilized all other aromatic compounds as substrates for denitrification without a lag period. On the other hand, cells grown on succinate utilized aromatic compounds after a lag period. Anaerobic growth on these substrates was dependent on the presence of nitrate and accompanied by the production of molecular nitrogen. The reduction of nitrite to nitrous oxide and the reduction of nitrous oxide to molecular nitrogen were also supported by anaerobic utilization of these aromatic compounds in this strain. Aerobically grown cells showed a lag period in denitrification with all substrates tested. Cells grown anaerobically on aromatic compounds also consumed oxygen. No lag period was observed for oxygen consumption during the transition period from anaerobic to aerobic conditions. Cells grown aerobically on one of these aromatic compounds were also adapted to utilize other aromatic compounds as substrates for respiration. However, cells grown on succinate showed a lag period during respiration with aromatic compounds. Some other characteristic properties on metabolism and regulation of this strain are also discussed for their physiological aspects.  相似文献   

12.
June Lascelles  David Wertlieb 《BBA》1971,226(2):328-340
Mutant strains of Rhodopseudomonas spheroides have been isolated which contain 5–50 times more bacteriochlorophyll and carotenoids than the wild type when grown under highly aerobic conditions in the dark. Their pigment content is similar to the wild type when grown in the light. One of the mutants (TA-R) grew more slowly than its parent strain under aerobic conditions but formed pigments at about 60% of the rate observed under photosynthetic conditions. The other mutants grew at rates similar to the wild type under all conditions. Synthesis of bacteriochlorophyll by suspensions of the mutants began without delay upon transfer from conditions of high to low aeration. In contrast to the wild type, magnesium protoporphyrin-S-adenosylmethionine methyltransferase (EC 2.1.1.11) activity in particulate preparations from the mutants was not repressed by growth under aerobic conditions in the light or dark. Ribulose diphosphate carboxylase (EC 4.1.1.39) activity was repressed by O2 in the mutants as in the wild type. Other enzyme activities were compared in mutant TA-R and its parent strain grown under the same conditions. NADH oxidase activity in particles from aerobically grown TA-R was about one third that found in the parent strain. However, the respiration rates of the intact cells did not differ. Light inhibited the respiration of aerobically grown TA-R, indicating that the bacteriochlorophyll formed under these conditions had photochemical activity. It is concluded that the insensitivity of the mutants to O2 repression is due to defects in the regulatory system which controls formation of the enzymes concerned in pigment synthesis.  相似文献   

13.
Photosynthetic microorganisms produce relatively large amounts of physiologically active materials which stimulate the physiological activity of other organisms. In this study, mammalian HeLa cells were cultured in different culture media which were Dulbecco's modified Eagle medium (DMEM) with newborn calf serum (NCS), and DMEM including different types of physiologically activating compounds (PACs) extracted from Rhodobacter sphaeroides grown under various culture conditions. R. sphaeroides was grown under the following five different culture conditions: anaerobically in the light, anaerobically in the dark and treated with dimethyl sulfoxide, aerobically in the dark for 48 h, in the light for 48 h, and in the light for 24 h and changed after previous culturing in the dark for 24 h. The growth of HeLa cell was measured by cell counting using a hemocytometer, and the fluorescent intensities of cellular lysosomes were measured to check the level of cellular stress caused by adding PACs. The growth of HeLa cells cultured in DMEM with PACs extracted from R. sphaeroides aerobically grown under dark conditions was enhanced compared to that of cells grown with NCS. We also found that a high concentration of pigments such as bacteriochlorophylls and carotenoids and a high concentration of arginine produced by R. sphaeroides aerobically grown in the dark were implicated in increased growth of the HeLa cells. Therefore, our results suggest that PACs extracted from R. sphaeroides aerobically cultured in dark conditions can enhance the physiological activity of mammalian cells and serve as nontoxic and bioavailable materials.  相似文献   

14.
We studied the diversity of Chloroflexus-like bacteria (CLB) in a hypersaline phototrophic microbial mat and assayed their near-infrared (NIR) light-dependent oxygen respiration rates. PCR with primers that were reported to specifically target the 16S rRNA gene from members of the phylum Chloroflexi resulted in the recovery of 49 sequences and 16 phylotypes (sequences of the same phylotype share more than 96% similarity), and 10 of the sequences (four phylotypes) appeared to be related to filamentous anoxygenic phototrophic members of the family Chloroflexaceae. Photopigment analysis revealed the presence of bacteriochlorophyll c (BChlc), BChld, and gamma-carotene, pigments known to be produced by phototrophic CLB. Oxygen microsensor measurements for intact mats revealed a NIR (710 to 770 nm) light-dependent decrease in aerobic respiration, a phenomenon that we also observed in an axenic culture of Chloroflexus aurantiacus. The metabolic ability of phototrophic CLB to switch from anoxygenic photosynthesis under NIR illumination to aerobic respiration under non-NIR illumination was further used to estimate the contribution of these organisms to mat community respiration. Steady-state oxygen profiles under dark conditions and in the presence of visible (VIS) light (400 to 700 nm), NIR light (710 to 770 nm), and VIS light plus NIR light were compared. NIR light illumination led to a substantial increase in the oxygen concentration in the mat. The observed impact on oxygen dynamics shows that CLB play a significant role in the cycling of carbon in this hypersaline microbial mat ecosystem. This study further demonstrates that the method applied, a combination of microsensor techniques and VIS and NIR illumination, allows rapid establishment of the presence and significance of CLB in environmental samples.  相似文献   

15.
The development of chlorosomes was studied in the green phototrophic bacterium Chloroflexus aurantiacus during the adaptation from chemotrophic (aerobiosis in the dark) to phototrophic (anaerobiosis in the light) conditions. Electron micrographs confirmed that chlorosomes were essentially absent from chemotrophic cells. After 5 h of adaptation, however, about 70% of the cells exhibited the presence of chlorosomes and after 19 h essentially all the cells contained chlorosomes. During the first 5 h of adaptation, the number of chlorosomes per µm2 of membrane area increased from zero to 37 ± 7, and during the following 40 h to 55 ± 17. The latter phase was characterized by an increase in the chlorosome volume from 36 400 to 91 800 nm3. Chemotrophic cells contained all of the three polypeptides assumed to be localized in the chlorosome envelope. As estimated on the basis of bacteriochlorophyll (BChl) c of chlorosomes, the relative contents of all of the three polypeptides decreased during the adaptation to phototrophic conditions by a factor of about eight. It is proposed that largely empty chlorosome bags are already present in chemotrophic cells and that these as well as subsequently formed chlorosomes are filled up with BChl c. The results are discussed in light of the role of the 5.7 kDa polypeptide in the arrangement of BChl c aggregates within the chlorosome.  相似文献   

16.
Anaerobic Growth of Purple Nonsulfur Bacteria Under Dark Conditions   总被引:18,自引:11,他引:7       下载免费PDF全文
Purple nonsulfur photosynthetic bacteria were cultured anaerobically in the absence of light by a modification of the Hungate technique. Growth was slow and resembled that of fastidious anaerobes; on yeast extract-peptone-agar medium, each cell produced about 16 descendants in 15 to 20 days. Growth was stimulated by addition of ethyl alcohol, acetate and H2, or pyruvate and H2. Cells grown in the presence of pyruvate and H2 produced acetate and CO2; each cell produced approximately 10 descendants in 24 hr under anaerobic, dark conditions. Spectrophotometric evidence obtained from cells which were the product of five generations suggests no difference between the bacteriochlorophyll and carotenoids synthesized by cells grown anaerobically under dark or light conditions. Likewise, the ultrastructure of the photosynthetic apparatus in cells grown anaerobically in the dark and in the light appears similar.  相似文献   

17.
Anaerobic suspensions of Rhodospirillum rubrum cells which had been grown in the dark under low oxygen tension showed only a small increase of their ATP content when illuminated for 30 s. The same suspensions failed to start immediate growth in the light. Both high light-induced ATP levels and immediate phototrophic growth were elicited by small amounts of oxygen which were insufficient by themselves to raise the ATP levels or to support growth in the dark. The oxygen requirement for growth disappeared after some time of anaerobic illumination and was not observed in suspensions of cells which had been grown in the light under anaerobiosis. Furthermore, these phototrophic cells reached the maximum levels of ATP when illuminated in the absence of oxygen.Strain F11, a mutant derivative of Rhodospirillum rubrum which lacked the ability to photoreduce oxygen in vitro, needed abnormally high amounts of oxygen to increase its ATP levels and to grow in the light. Besides, KCN inhibited the increase of ATP levels in illuminated mutant cells but not wild type cells. An additional difference between both strains was that the oxygen requirement for growth did not disappear in the mutant after some time of anaerobic incubation in the light.To explain these observations, it is proposed that the photosynthetic system of semiaerobically-grown Rhodospirillum rubrum becomes overreduced under anaerobiosis. The oxygen-photoreducing system, which is impaired in the mutant, is apparently used to oxidize the photosynthetic system to its optimal redox state, carrying electrons to oxygen or to other endogenous acceptors which are formed during incubation in the light. The mutant seems to replace the defective system by a cyanide-sensitive pathway which may reduce oxygen but not the alternative endogenous acceptors.  相似文献   

18.
The nature of the endogenous reserves of Saccharomyces cerevisiae was examined with respect to conditions of growth, specifically extremes of oxygen tension and carbon source. Cells were grown in batch culture at 30 C under aerobic conditions on a galactose or glucose carbon source and under anaerobic conditions on glucose. The greatest effect of growth conditions on the chemical composition of the cells was on their fatty acid and sterol content.Cells grown under both aerobic and anaerobic conditions mobilised concurrently protein, glycogen, trehalose and fatty acids during a period of 72 hours' starvation under aerobic conditions. The viability of both types of the aerobically grown cells declined to 75% during this period and was not influenced by the initial fatty acid and sterol content of the cells. Cells grown anaerobically showed a more rapid decline in viability which was only 17% after 72 hours' starvation. This loss of viability was not due to a lack of available endogenous reserves but was probably due to an impaired membrane function caused by a deficiency of sterols and unsaturated fatty acids.  相似文献   

19.
Rhodopseudomonas capsulata was grown either phototropically in the light or chemotrophically in the dark at oxygen tensions of 5 mm and 3 mm Hg in ammonium-limited continuous culture. During growth limitation bacteriochlorophyll content of cells and membranes varied dependent on growth rate drastically in chemotrophic cultures. Concomittantly, the ratio of membrane protein to total protein varied in the range of 30-41%. This dependence of membrane differentiation on growth rate was less evident in phototrophically grown cells. The incorporation of the bulk of bacteriochlorophyll was shown to be quantitatively correlated to the incorporation of 1-3 low molecular weight proteins with molecular weights in the range of 14 to less than 10 k daltons. Supported by similar findings of other authors it is proposed, that these proteins are to be attributed to the species of antenna bacteriochlorophyll and represent components of the photosynthetic apparatus. With decreasing growth rates the size of the photosynthetic unit with respect to the population of bacteriochlorophyll- and protein molecules was reduced subsequent to a reduction in the rate of incorporation of antenna-bacteriochlorophyll and the low molecular weight proteins, the reaction-center bacteriochlorophyll content of the membranes remaining constant. A parallel decrease in potential phosphorylating capacity was observed. It is concluded, that under these conditions, primary photochemical reactions in the reaction center were not the rate-limiting step in photophosphorylation. The interaction of growth limitation by an anabolic precursor (NH+4) and control of membrane differentiation by light intensity or oxygen tension is discussed.  相似文献   

20.
In order to distinguish between the regulatory effects of oxygen tension and light intensity on cytochrome c oxidase protein and enzymatic activity cells of Rhodobacter capsulatus were shifted from phototrophic (anaerobic, light) growth to aerobic-light, aerobic-dark and to anaerobic-dark conditions, respectively. During shift-experiments the formation of oxidase protein and regulation of oxidase activity was followed by immunological and enzymatic means. The results support the idea, that the formation of oxidase protein is regulated by oxygen tension and light intensity changes, whereas the regulation of oxidase activity seems only to be correlated to the oxygen tension. A DNA sequence involved in the oxygen-dependent regulation of cytochrome oxidase could be identified in the regulation-deficient oxidase mutant H41 of R. capsulatus. Immunological investigations of cytochrome c 2 from mutant H41 demonstrated at the same time the participation of the c 2-polypeptide in the regulation of cytochrome c oxidase.Abbreviations Bchl bacteriochlorophyll - CIE crossed immuno-electrophoresis - DMSO dimethyl sulfoxide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号