首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
R(−)-Ondansetron and S(+)-ondansetron in human serum were resolved and quantified using a stereospecific HPLC method. Each enantiomer and the internal standard prazosin were isolated from serum using a solid-phase extraction procedure on a cyanopropyl column. Recoveries of 97, 96 and 88% were obtained for the R(−)-enantiomer, the S(+)-enantiomer, and the internal standard, respectively. A cellulose-based chiral analytical column (Chiralcel OD) was used with a mobile phase consisting of hexane—95% ethanol—2-propanol—acetonitrile (65:25:10:1, v/v). Linear calibration curves were obtained for each enantiomer in serum in the concentration range 10–200 ng/ml. The limit of quantitation of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using UV detection at 216 nm was 2.5 ng/ml (signal-to-noise ratio of 3).  相似文献   

2.
A solid-phase extraction (SPE) procedure was developed for the quantification of nalbuphine in a small volume (500 μl) of human plasma with subsequent assay by high-performance liquid chromatography (HPLC) and electrochemical detection using 6-monoacetylmorphine as internal standard. Plasma was extracted using Bond Elute certified extraction columns (LCR: 10 ml, 130 mg) after conditioning with methanol and 0.2 M Tris buffer (pH 8). Elution was performed with a CH2Cl2-isopropanol-NH4OH (79:20:, v/v). The organic phase was evaporated to dryness and resuspended in HPLC mobile phase containing 2% isopropanol. Linearity was assessed over the 5–100 ng/ml concentration range and a straight line passing through the origin was obtained. Experiments with spiked plasma samples resulted in recoveries of 95±5.4% and 98±6.2% for nalbuphine and 6-monoacetylmorphine, respectively. The optimal pH conditions for the SPE were found at pH 8. The intra-day coefficients of variation (C.V.) for 5, 40, and 100 ng/ml were 5.3, 3.0 and 2.3% (n=8) and the inter-day C.V.s were 7.7, 3.2 and 3.5% (n=10), respectively. The detection limit for 500 μl plasma sample was 0.02 ng/ml and the limit of quantification 0.1 ng/ml (C.V.=12.4%). The ease of the proposed method of analysis, as well as its high accuracy and sensitivity allow its application to pharmacokinetic studies. A preliminary kinetic profile of nalbuphine after rectal administration in a pediatric patient is presented.  相似文献   

3.
A sensitive high-performance liquid chromatographic assay has been developed to determine the levels of a new antiretroviral agent, stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T), in human plasma. Didanosine (2′,3′-dideoxyinosine, ddI) was used as the internal standard. The very selective sample pretreatment involved solid-phase extraction using silica gel columns. Chromatography was carried out on a μBondapak phenyl column, using a mobile phase of 0.005 M phosphate buffer (pH 6.8)—methanol (90:10, v/v) and ultraviolet detection at 265 nm. The method has been validated, and stability tests under various conditions have been performed. The detection limit is 10 ng/ml (using 500-μl human plasma samples). The bioanalytical assay has been used in a single pharmacokinetic experiment in a rat to investigate the applicability of the method in vivo.  相似文献   

4.
A rapid, selective, sensitive and reproducible HPLC with recutive electrochemical detection for quantitatvie determination of artemether (ART) and its plasma metabolite, dihydroartemisinin (DHA: and β isomers) in plasma is described. The procedure involved the extraction of ART, DHA and the internal standard, artemisinin (ARN) with dichloromethane-tert.-methylbutyl ether (1:1, v/v) or n-butyl chloride-ethyl acetate (9:1, v/v). Chromatographic separation was performed with a mobile phase of acetonitrile-water (20:80, v/v) containing 0.1 M acetic acid pH 5.0, running through a μBondapak CN column. The method was capable of separating the two isomeric forms of DHA (, β). The retention times of -DHA, β-DHA, ARN and ART were 4.6, 5.9, 7.9 and 9.6 min, respectively. Validation of the assay method was performed using both extraction systems. The two extraction systems produced comparable recoveries of the various analytes. The average recoveries of ART, DHA and ARN over the concentration range 80–640 ng/ml were 86–93%. The coefficients of variation were below 10% for all three drugs (ART, -DHA, ARN). The minimum detectable concentrations for ART and -DHA in spiked plasma samples were 5 and 3 ng/ml, respectively. The method was found to be suitable for use in clinical pharmacokinetic study.  相似文献   

5.
A sensitive and specific method for the determination of the aza alkyl lysophospholipid (AALP) 3-methoxy-2-N,N-methyloctadecylaminopropyloxyphosphorylcholine (I) in rat plasma is described. The target molecule was analyzed by high-performance liquid chromatography (HPLC)—mass spectrometry (MS) after one single liquid—liquid extraction with chloroform—methanol (2:1, v/v). 1,2-Didecanoyl-sn-glycero-3-phosphocholine was used as internal standard. HPLC was carried out using a polymeric reversed-phase column; the coupling to the mass spectrometer was a particle beam (PB) interface, and the ionization method was electron impact (EI). This simple and rugged method permits the measurement of I in rat plasma in the range of 25 ng/ml–5 μg/ml with good accuracy and precision and is used in pharmacokinetic studies.  相似文献   

6.
A high-performance liquid chromatography (HPLC) method was developed for quantification of both isomers of the thioxanthene neuroleptic flupentixol and of the butyrophenone derivative haloperidol in human serum. After extraction with diethyl ether–n-heptane (50:50, v/v), an isocratic normal-phase HPLC system with a Hypersil cyanopropyl silica column (250×4.6 mm, 5 μm particle size) was used with ultraviolet detection at 254 nm and elution with a mixture of 920 ml acetonitrile, 110 ml methanol, 30 ml 0.1 M ammonium acetate, and 50 μl triethylamine. The limit of quantitation of 0.5 ng/ml and 0.3 ng/ml for flupentixol and haloperidol, respectively, was sufficient to quantify both compounds in serum after administration of clinically adjusted doses. The suitability of the described method for therapeutic drug monitoring and clinical pharmacokinetic studies was assessed by analysis of more than 100 trough level serum samples.  相似文献   

7.
A highly sensitivity liquid chromatography–tandem mass spectrometry method has been developed for the quantitation of sodium cromoglycate (SCG) in human plasma. The method was validated over a linear range of 0.100–50.0 ng/ml, using 13C4 sodium cromoglycate as the internal standard. Compounds were extracted from 1.0 ml of lithium heparin plasma by methanol elution of C18 solid-phase extraction cartridges. The dried residue was reconstituted with 100 μl of 0.01 N HCl, and 30 μl was injected onto the LC–MS–MS system. Chromatographic separation was achieved on a C8 (3.5 μm) column with an isocratic mobile phase of methanol–water–0.5 M ammonium acetate (35:64.8:0.2, v/v/v). The analytes were detected with a PE Sciex API 3000 mass spectrometer using turbo ion spray with positive ionization. Ions monitored in the multiple reaction monitoring (MRM) mode were m/z 469.2 (precursor ion) to m/z 245.1 (product ion) for SCG and m/z 473.2 (precursor ion) to m/z 247.1 (product ion) for 13C4 SCG (I.S.). The average recoveries of SCG and the I.S. from human plasma were 91 and 87%, respectively. The low limit of quantitation was 0.100 ng/ml. Results from a 4-day validation study demonstrated excellent precision (C.V.% values were between 1.9 and 6.5%) and accuracy (−5.4 to −1.2%) across the calibration range of 0.100–50.0 ng/ml.  相似文献   

8.
A simple, accurate and precise isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the determination of p-chloronitrobenzene (p-CNB) in rat plasma. A plasma sample was deproteinized with methanol containing the internal standard (p-bromonitrobenzene). The resulting methanol eluate obtained after centrifugation was filtered and injected into a high-performance liquid chromatograph (50 μl each). A column packed with 5 μm octadecylsilane (ODS) spherical particles was used with isocratic elution of methanol—water (45:55, v/v) at a flow-rate of 1.0 ml/min. The compounds were detected by ultraviolet absorbance at 280 nm. The retention times of p-CNB and the internal standard were 12.5 and 15.5 min, respectively, at a column oven temperature of 30°C. The results were linear from 0.05 to 100 μg/ml (r = 0.999), and the detection limit was 0.01 μg/ml. The relative error and the coefficient of variation on replicate assays were less than 7 and 10%, respectively, for all concentrations studied. The overall recoveries of p-CNB were between 97 and 105%. Plasma samples could be stored for up to one month at −20°C.  相似文献   

9.
A sensitive high-performance liquid chromatographic assay has been developed to determine the levels of 3'-amino-3'-deoxy-thymidine (AMT), a cytotoxic metabolite of 3'-azido-3'-deoxy-thymidine (AZT, zidovudine), in human plasma. The sample pretreatment involved solid-phase extraction using cation-exchange extraction columns. Chromatography was carried out on a C8 column, using a mobile phase of methanol—0.01 M ammonium acetate (pH 5)—0.25 M sodium dioctylsulfosuccinate (60:40:4, v/v/v) and ultraviolet detection at 265 nm. The method has been validated, and stability tests under various conditions have been performed. The lower limit of quantitation is 5 ng/ml (using 500-μl human plasma samples). The bioanalytical assay has been used for the determination of AMT in patients with AIDS who used AZT.  相似文献   

10.
An HPLC method for the quantification of ketoprofen enantiomers in human plasma is described. Following extraction with a disposable C18 solid-phase extraction column, separation of ketoprofen enantiomers and I.S. (3,4-dimethoxy benzoic acid) was achieved using a chiral column [Chirex 3005; (R)-1-naphthylglycine 3,5-dinitrobenzoic acid] with the mobile phase, 0.02 M ammonium acetate in methanol, set at a flow-rate of 1.2 ml/min. Baseline separation of ketoprofen enantiomers and I.S., free from interferences, was achieved in less than 20 min. The calibration curves (n = 14) were linear over the concentration range of 0.16 to 5.00 μg/ml per enantiomer [mean r2 of 0.999 for both enantiomers, root mean square error were 0.015 for R(−) and 0.013 for S(+)]. The inter-day coefficient of variation for duplicate analysis of spiked samples was less than 7% and the accuracy was more than 93% over the concentration range of 0.2 to 4.0 μg/ml for individual enantiomer using 1 ml of plasma sample. This method has been applied to a pharmacokinetic study from healthy human volunteers following the administration of a ketoprofen extended release product (200 mg). This method is simple, fast and should find wide application in monitoring pharmacokinetic studies of ketoprofen.  相似文献   

11.
O-Hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) is a chiral organophosphorus compound that undergoes enzymatic hydrolysis in the rat and hen. Studies of the stereospecificity of its biodegradation are necessary to establish HDCP toxicity. To this effect, methods have been developed for the analysis of the HDCP stereoisomers by gas chromatography (GC) and high-performance liquid chromatography (HPLC). The best resolution and analysis were obtained by HPLC with UV detection, a OA-4100 Techocel chiral column and the mobile phase: hexane—1,2-dichloroethane—ethanol (92:5:3, v/v/v). The detection limit was 25 μM for HDCP and 5 μM for one of its hydrolytic products: 2,5-dichlorophenol (DCP). The method was reproducible intra o inter die. Moreover, a method is described for the liquid extraction of HDCP and DCP with 1,2-dichloroethane in biological samples, with a yield of (80.3 ± 9.7)% (n = 10, S.D.) for HDCP and (84.1 ± 10.0)% (n = 10, S.D.) for DCP. The method is compared with the solid-phase extraction technique with C18 sorbent. The hydrolysis of HDCP by hen plasma is studied.  相似文献   

12.
A sensitive, selective and efficient reversed-phase high-performance liquid chromatographic (HPLC) method is reported for the determination of furosemide in human plasma and urine. The method has a sensitivity limit of 5 ng/ml in plasma, with acceptable within- and between-day reproducibilities and good linearity (r2>0.99) over a concentration range from 0.05 to 2.00 μg/ml. The one-step extract of furosemide and the internal standard (warfarin) from acidified plasma or urine was eluted through a μBondapak C18 column with a mobile phase composed of 0.01 M potassium dihydrogenphosphate and acetonitrile (62:38, v/v) adjusted to pH 3.0. Within-day coefficients of variation (C.V.s) ranged from 1.08 to 8.63% for plasma and from 2.52 to 3.10% for urine, whereas between-day C.V.s ranged from 4.25 to 10.77% for plasma and from 5.15 to 6.81% for urine at three different concentrations. The minimum quantifiable concentration of furosemide was determined to be 5 ng/ml. The HPLC method described has the capability of rapid and reproducible measurement of low levels of furosemide in small amounts of plasma and urine. This method was utilized in bioavailability/pharmacokinetic studies for the routine monitoring of furosemide levels in adults, children and neonate patients.  相似文献   

13.
A stereoselective high-performance liquid chromatographic (HPLC) method is described for the selective and sensitive quantitation in human plasma of R-(+)- and S-(−)-enantiomers of remoxipride. Remoxipride was extracted from basified plasma into hexane-methyl-tert.-butyl ether (20:80, v/v), washed with sodium hydroxide (1.0 M), then back-extracted into phosphoric acid (0.1 M). A structural analog of remoxipride was used as an internal standard. The sample extracts were chromatographed using a silica-based derivatized cellulose chiral column, Chiralcel OD-R, and a reversed-phase eluent containing 30–32% acetonitrile in 0.1 M potassium hexafluorophosphate. Ultraviolet (UV) absorbance detection was performed at 214 nm. Using 0.5-ml plasma aliquots, the method was validated in the concentration range 0.02-2.0 μg/ml and was applied in the investigation of systemic inversion of remoxipride enantiomers in man.  相似文献   

14.
An isocratic liquid chromatographic method for direct sample injection has been developed for the quantitation of felbamate and four metabolites in rat cerebrospinal fluid. The method uses 0.050- or 0.025-ml aliquots of cerebrospinal fluid diluted with equal volumes of internal standard. Chromatography is performed on a 150 mm × 4.6 mm I.D. Spherisorb ODS2, 3-μm HPLC column eluted with a phosphate buffer—acetonitrile—methanol (820:120:60, v/v/v) mobile phase and ultraviolet absorbance detection at 210 nm. The linear quantitation ranges are: felbamate and the 2-hydroxy metabolite 0.195–200 μg/ml, the propionic acid metabolite 0.195–50.0 μg/ml, the p-hydroxy metabolite 0.781 to 50.0 μg/ml, and the monocarbamate metabolite 0.098–50.0 μg/ml.  相似文献   

15.
A high-performance liquid chromatographic method has been developed for the determination of the new podophyllotoxin derivative NK 611 in plasma samples. A solid—liquid extraction procedure with C18 extraction columns was used for extraction of plasma samples containing NK 611. The adsorbed NK 611 was eluted from the extraction columns with methanol—acetonitrile (50:50, v/v). The elution liquid was injected into a reversed-phase system consisting of a Chrompack C18 column. The mobile phase was acetonitrile—20 mM phosphate buffer, pH 7 (30:70, v/v). The UV detection mode allows sensitive determination of NK 611 in plasma within phase I trials. The limit of detection was 10 ng/ml, the limit of quantitation 35 ng/ml (for 1 ml of extracted plasma and 20-μl injection volume). The calibration curve is linear within the concentration range 100–1000 ng/ml. The recovery of NK 611 from spiked plasma samples was approximately 80%.  相似文献   

16.
An isocratic high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of clozapine (8-chloro-11-(4′-methyl)piperazino-5H-dibenzo[b,e]-1,4-diazepine) and its two major metabolites in plasma and red blood cells (RBCs). The method involves sample clean-up by liquid-liquid extraction with ethyl acetate. The organic phase was back-extracted with 0.1 M hydrochloric acid. Loxapine served as the internal standard. The analytes were separated by HPLC on a Kromasil Ultrabas C18 analytical column (5 μm particle size; 250×4.6 mm I.D.) using acetonitrile-phosphate buffer pH 7.0 (48:52, v/v) as eluent and were measured by UV absorbance detection at 254 nm. The limits of quantification were 20 ng/ml for clozapine and N-desmethylclozapine and 30 ng/ml for clozapine N-oxide. Recovery from plasma or RBCs proved to be higher than 62%. Precision, expressed as % C.V., was in the range 0.6–15%. Accuracy ranged from 96 to 105%. The method's ability to quantify clozapine and two major metabolites simultaneously with precision, accuracy and sensitivity makes it useful in therapeutic drug monitoring.  相似文献   

17.
The chemical substance 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) is in clinical use for the treatment of hereditary tyrosinemia type 1. In the present study, the plasma concentration of NTBC was determined by a coupled column liquid chromatographic method. A 20-μl volume of plasma was diluted with phosphate buffer, pH 2, and injected into a small precolumn (BioTrapAcid C18) with a mobile phase containing sulfuric acid. The precolumn was based on the restricted access principle, i.e., retention of NTBC within the lipophilic pores, while polar and large endogenous compounds were eluted with the void volume. NTBC was transferred to the analytical column using a mobile phase with a high content of acetonitrile. The compound was monitored by UV detection at 278 nm. The standard curve was linear between 0.3 and 69 μM, and the between-day precision (RSD) was 3% (n=6 days) at 13.8 μM and 14% (n=6 days) at 0.3 μM NTBC in plasma. The quantitation limit was approximately 0.3 μM using 20 μl of plasma.  相似文献   

18.
A high-performance liquid chromatographic method was developed for the determination of a chemoprotective agent, 2-(allylthio)pyrazine (I), in human plasma and urine, and in rat blood and tissue homogenate using diazepam as an internal standard. The sample preparation was simple; 2.5 volumes of acetonitrile were added to the biological sample to deproteinize it. A 50–100 μl aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was acetonitrile–water (55:45, v/v), and it was run at a flow-rate of 1.5 ml/min. The column effluent was monitored using an ultraviolet detector at 330 nm. The retention times for I and the internal standard were 4.0 and 5.1 min, respectively. The detection limits of I in human plasma and urine, and in rat tissue homogenate (including blood) were 20, 20 and 50 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 6.1%) in a concentration range from 0.02 to 10 μg/ml for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

19.
Irinotecan (CPT-11) is an anticancer agent widely employed in the treatment of colorectal carcinoma. A simple, rapid and sensitive high-performance liquid chromatographic method for the simultaneous determination of CPT-11 and its metabolite SN-38 in plasma, and their preliminary clinical pharmacokinetics are described. Both deproteinisation of plasma specimens (100 μl) and addition of the internal standard, camptothecin (CPT), are achieved by incorporating to samples 100 μl of a solution of CPT (1 μg/ml) in acetonitrile–1 mM orthophosphoric acid (90:10); 200 μl of this acidified acetonitrile solution, drug-free, is also added to accomplish complete deproteinisation: this procedure reduces sample preparation time to a minimum. After deproteinisation, samples are treated with potassium dihydrogenphosphate (0.1 M) and injected into a Nucleosil C18 (5 μm, 250×4.0 mm) column. Mobile phase consists of potassium dihydrogenphosphate (0.1 M)–acetonitrile (67:33), at a flow-rate of 1 ml/min. CPT-11, SN-38 and CPT are detected by fluorescence with excitation wavelength set at 228 nm and emission wavelengths of CPT-11, SN-38 and CPT fixed, respectively, at 450, 543 and 433 nm. The limits of quantitation for CPT-11 and SN-38 are 1.0 and 0.5 ng/ml, respectively. This method shows good precision: the within day relative standard deviation (RSD) for CPT-11 (1–10 000 ng/ml) is 5.17% (range 2.15–8.27%) and for SN-38 (0.5–400 ng/ml) is 4.33% (1.32–7.78%); the between-day RSDs for CPT-11 and SN-38, in the previously described ranges, are 6.82% (5.03–10.8%) and 4.94% (2.09–9.30%), respectively. Using this assay, plasma pharmacokinetics of CPT-11, SN-38 and its glucuronidated form, SN-38G, have been determined in one patient receiving 200 mg/m2 of CPT-11 as a 90 min intravenous infusion. The peak plasma concentration of CPT-11 at the end of the infusion is 3800 ng/ml. Plasma decay is biphasic with a terminal half-life of 11.6 h. The volume of distribution at steady state (Vss) is 203 l/m2, and the total body clearance (Cl) is 14.8 l/h·m2. The maximum concentrations of SN-38 and SN-38G reach 28.9 and 151 ng/ml, respectively.  相似文献   

20.
A sensitive analytical procedure for bupivacaine dosing in plasma samples by reversed-phase high-performance liquid chromatography is described. After a two-step extraction, the analysis was performed using a C18 column and a mobile phase of 0.01 M sodium dihydrogen-phosphate (pH 2.1)—acetonitrile (80:20, v/v). The extraction yield of bupivacaine from plasma was 73.5 ± 5.1% (mean ± S.D., n = 10). The within-day and between-day reproducibilities at a concentration of 100 ng/ml were 2.1% and 5.6%, respectively (n = 10). Calibration curves were linear (r2 = 0.9996) between 5 and 1000 ng/ml. The limit of detection, defined by a signal-to-noise ratio of 3:1, was 2 ng/ml. The accuracy at a concentration of 100 ng/ml was 2.3%. This method could be applied to the plasma analysis of seven other local anaesthetics (articaine, etidocaine, lidocaine, mepivacaine, pramocaine, procaine and tetracaine). The procedure was used in bioavailability studies of bupivacaine-loaded poly( -lactide) (i.e. PLA) and poly( -lactide-co-glycolide) (i.e. PLGA) microspheres after subcutaneous and intrathecal administrations in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号