首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity for nonself recognition is a ubiquitous and essential aspect of biology. In filamentous fungi, nonself recognition during vegetative growth is believed to be mediated by genetic differences at heterokaryon incompatibility (het) loci. Filamentous fungi are capable of undergoing hyphal fusion to form mycelial networks and with other individuals to form vegetative heterokaryons, in which genetically distinct nuclei occupy a common cytoplasm. In Neurospora crassa, 11 het loci have been identified that affect the viability of such vegetative heterokaryons. The het-c locus has at least three mutually incompatible alleles, termed het-c(OR), het-c(PA), and het-c(GR). Hyphal fusion between strains that are of alternative het-c specificity results in vegetative heterokaryons that are aconidial and which show growth inhibition and hyphal compartmentation and death. A 34- to 48-amino-acid variable domain, which is dissimilar in HET-C(OR), HET-C(PA), and HET-C(GR), confers allelic specificity. To assess requirements for allelic specificity, we constructed chimeras between the het-c variable domain from 24 different isolates that displayed amino acid and insertion or deletion variations and determined their het-c specificity by introduction into N. crassa. We also constructed a number of artificial alleles that contained novel het-c specificity domains. By this method, we identified four additional and novel het-c specificities. Our results indicate that amino acid and length variations within the insertion or deletion motif are the primary determinants for conferring het-c allelic specificity. These results provide a molecular model for nonself recognition in multicellular eucaryotes.  相似文献   

2.
Summary A detailed analysis has been made of S genotypes in progenies derived from induced and spontaneous inbreeding processes in a clonal population of Lycopersicum peruvianum Mill. The results indicate that, in certain genetic backgrounds, induced inbreeding leads to the generation of a new S allele which usually first appears in the pistil of individuals otherwise homozygous for one of the parental specificities. When the change in specificity occurs in S heterozygotes, spontaneous self-compatibility is promoted and the new allele can be transmitted, via selfing, to the following generation.The factors and mechanisms which may be involved in the generation of new specificities at the S locus of higher plants are discussed and preliminary evidence is provided which suggests that the hypothesis of mutation by equal crossing-over is not applicable to the present study.
Zusammenfassung Es wurde eine ausführliche Analyse der S-Genotypen in Nachkommenschaften einer geklonten Population von Lycopersicon peruvianum Mill, nach induzierter und spontaner Inzucht gemacht.Die Ergebnisse deuten an, da induzierte Inzucht bei einem bestimmten genotypischen Milieu zum Entstehen eines neuen S-Allels führt. Dieses erscheint gewöhnlich zuerst in den Griffeln einzelner Individuen, die im übrigen für eines der elterlichen Allele homozygot sind. Wenn die Änderung in S-Heterozygoten auftritt, dann wird die spontane Selbstkompatibilität gefördert. Das neue Allel kann durch Selbstung in die nächste Generation übertragen werden.Die Faktoren und Mechanismen, die am Entstehen neuer Allele am S-Locus höherer Pflanzen beteiligt Scin können, werden diskutiert. Ein vorläufiger Hinweis wird dafür erbracht, da die Hypothese der Mutation durch equal crossing-over für die vorliegende Untersuchung nicht zutrifft.


This publication is contribution no. 644 of the EURATOM Biology Division.  相似文献   

3.
Endoribonuclease RNase E has a central role in both processing and decay of RNA in Escherichia coli, and apparently in many other organisms, where RNase E homologs were identified or their existence has been predicted from genomic data. Although the biochemical properties of this enzyme have been already studied for many years, the substrate specificity of RNase E is still poorly characterized. Here, I have described a novel oligonucleotide-based assay to identify specific sequence determinants that either facilitate or impede the recognition and cleavage of RNA by the catalytic domain of the enzyme. The knowledge of these determinants is crucial for understanding the nature of RNA–protein interactions that control the specificity and efficiency of RNase E cleavage and opens new perspectives for further studies of this multi-domain protein. Moreover, the simplicity and efficiency of the proposed assay suggest that it can be a valuable tool not only for the characterization of RNase E homologs but also for the analysis of other site-specific nucleases.  相似文献   

4.
Covalent conjugation of proteins by ubiquitin or ubiquitin-like molecules is an important form of post-translational modification and plays a critical role in many cellular processes. Similar to the concept of phosphorylation and dephosphorylation, these conjugates are regulated by a large number of deconjugating enzymes. Here, we report the cloning of a 2,141-base pair DNA fragment from human placenta cDNA library by a strategy that involves expressed sequence tag data base searching, polymerase chain reaction, and rapid amplification of cDNA ends. Nucleotide sequence analysis revealed that the cloned cDNA contains an open reading frame of 1,143 base pairs encoding a novel protease, USP21, which is composed of 381 residues with a calculated molecular mass of 43 kDa. The human USP21 gene is located on chromosome 1q21 and encodes a member of the ubiquitin-specific protease family with highly conserved Cys and His domains. The activity and specificity of USP21 were determined by using a COS cell expression system in vivo. We showed that USP21 is capable of removing ubiquitin from ubiquitinated proteins as expected. Furthermore, USP21 is capable of removing NEDD8 from NEDD8 conjugates but has no effect on Sentrin-1 conjugates. As expected from its biochemical activity, overexpression of USP21 has a profound growth inhibitory effect on U2OS cells. Thus, USP21 is the first ubiquitin-specific protease shown to have dual specificity for both ubiquitin and NEDD8 and may play an important role in the regulation of cell growth.  相似文献   

5.
6.
7.
8.

Background  

Conditional knockout mice are a useful tool to study the function of gene products in a tissue-specific or inducible manner. Classical approaches to generate targeting vectors for conditional alleles are often limited by the availability of suitable restriction sites. Furthermore, plasmid-based targeting vectors can only cover a few kB of DNA which precludes the generation of targeting vectors where the two loxP sites are placed far apart. These limitations have been overcome in the recent past by using homologous recombination of bacterial artificial chromosomes (BACs) in Escherichia coli to produce large targeting vector containing two different loxP-flanked selection cassettes so that a single targeting event is sufficient to introduce loxP-sites a great distances into the mouse genome. However, the final targeted allele should be free of selection cassettes and screening for correct removal of selection cassettes can be a laborious task. Therefore, we developed a new strategy to rapidly identify ES cells containing the desired allele.  相似文献   

9.
10.
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.  相似文献   

11.
dsRBDs often bind dsRNAs with some specificity, yet the basis for this is poorly understood. Rnt1p, the major RNase III in Saccharomyces cerevisiae, cleaves RNA substrates containing hairpins capped by A/uGNN tetraloops, using its dsRBD to recognize a conserved tetraloop fold. However, the identification of a Rnt1p substrate with an AAGU tetraloop raised the question of whether Rnt1p binds to this noncanonical substrate differently than to A/uGNN tetraloops. The solution structure of Rnt1p dsRBD bound to an AAGU-capped hairpin reveals that the tetraloop undergoes a structural rearrangement upon binding to Rnt1p dsRBD to adopt a backbone conformation that is essentially the same as the AGAA tetraloop, and indicates that a conserved recognition mode is used for all Rnt1p substrates. Comparison of free and RNA-bound Rnt1p dsRBD reveals that tetraloop-specific binding requires a conformational change in helix α1. Our findings provide a unified model of binding site selection by this dsRBD.  相似文献   

12.
A group of dual specificity protein phosphatases negatively regulates members of the mitogen-activated protein kinase (MAPK) superfamily, which consists of three major subfamilies, MAPK/extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p38. Nine members of this group of dual specificity phosphatases have previously been cloned. They show distinct substrate specificities for MAPKs, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. Here we have cloned and characterized a novel dual specificity phosphatase, which we have designated MKP-5. MKP-5 is a protein of 482 amino acids with a calculated molecular mass of 52.6 kDa and consists of 150 N-terminal amino acids of unknown function, two Cdc25 homology 2 regions in the middle, and a C-terminal catalytic domain. MKP-5 binds to p38 and SAPK/JNK, but not to MAPK/ERK, and inactivates p38 and SAPK/JNK, but not MAPK/ERK. p38 is a preferred substrate. The subcellular localization of MKP-5 is unique; it is present evenly in both the cytoplasm and the nucleus. MKP-5 mRNA is widely expressed in various tissues and organs, and its expression in cultured cells is elevated by stress stimuli. These results suggest that MKP-5 is a novel type of dual specificity phosphatase specific for p38 and SAPK/JNK.  相似文献   

13.
Here we report on the expression and function of RNase 7, one of the final RNase A superfamily ribonucleases identified in the human genome sequence. The human RNase 7 gene is expressed in various somatic tissues including the liver, kidney, skeletal muscle and heart. Recombinant RNase 7 is ribonucleolytically active against yeast tRNA, as expected from the presence of eight conserved cysteines and the catalytic histidine–lysine– histidine triad which are signature motifs of this superfamily. The protein is atypically cationic with an isoelectric point (pI) of 10.5. Expression of recombinant RNase 7 in Escherichia coli completely inhibits the growth of the host bacteria, similar to what has been observed for the cationic RNase, eosinophil cationic protein (ECP/RNase 3, pI 11.4). An in vitro assay demonstrates dose-dependent cytotoxicity of RNase 7 against bacteria E.coli, Pseudomonas aeruginosa and Staphylococcus aureus. While RNase 7 and ECP/RNase 3 are both cationic and share this particular aspect of functional similarity, their protein sequence identity is only 40%. Of particular interest, ECP/RNase 3’s cationicity is based on an (over)abundance of arginine residues, whereas RNase 7 includes an excess of lysine. This difference, in conjunction with the independent origins and different expression patterns, suggests that RNase 7 and ECP/RNase 3 may have been recruited to target different pathogens in vivo, if their physiological functions are indeed host defenses.  相似文献   

14.
A novel plant lectin has been isolated from the rhizomes of Calystegia sepium (hedge bindweed) and partially characterized. The lectin is a dimeric protein composed of two identical non-covalently linked subunits of 16kDa. Hapten inhibition studies indicate that the novel lectin is best inhibited by maltose and mannose and hence exhibits a sugar binding specificity that differs in some respects from that of all previously isolated plant lectins. Mitogenicity tests have shown that the Calystegia lectin is a powerful T-cell mitogen. Affinity purification of human, plant and fungal glycoproteins on immobilized C. sepium lectin demonstrates that this novel lectin can be used for the isolation of glycoconjugates from various sources. Moreover, it can be expected that by virtue of its distinct specificity, the new lectin will become an important tool in glycobiology. Abbreviations: Calsepa, lectin isolated from Calystegia sepium; ConA, concanavalin A; LPS, lipopolysaccharide; PBS, phosphate buffered saline (1.5 mMKH2PO4, 10 mM Na2HPO4, 3 mM KCl, 140 mM NaCl, pH 7.4) This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
Small changes in target specificity can sometimes be achieved, without changing aptamer structure, through mutation of a few bases. Larger changes in target geometry or chemistry may require more radical changes in an aptamer. In the latter case, it is unknown whether structural and functional solutions can still be found in the region of sequence space close to the original aptamer. To investigate these questions, we designed an in vitro selection experiment aimed at evolving specificity of an ATP aptamer. The ATP aptamer makes contacts with both the nucleobase and the sugar. We used an affinity matrix in which GTP was immobilized through the sugar, thus requiring extensive changes in or loss of sugar contact, as well as changes in recognition of the nucleobase. After just five rounds of selection, the pool was dominated by new aptamers falling into three major classes, each with secondary structures distinct from that of the ATP aptamer. The average sequence identity between the original aptamer and new aptamers is 76%. Most of the mutations appear to play roles either in disrupting the original secondary structure or in forming the new secondary structure or the new recognition loops. Our results show that there are novel structures that recognize a significantly different ligand in the region of sequence space close to the ATP aptamer. These examples of the emergence of novel functions and structures from an RNA molecule with a defined specificity and fold provide a new perspective on the evolutionary flexibility and adaptability of RNA.  相似文献   

16.
The HLA region harbors some of the most polymorphic loci in the human genome. Among them is the class II locus HLA-DRB1, with more than 400 known alleles. The age of the polymorphism and the rate at which new alleles are generated at HLA loci has caused much controversy over the years. Previous studies have mostly been restricted to the 270 base pairs that constitute the second exon and represent the most variable part of the gene. Here, we investigate the evolutionary history of the HLA-DRB1 locus on the basis of an analysis of 15 genomic full-length alleles (10-15 kb). In addition, the variation in 49 complete coding sequences and 322 exon 2 sequences were analyzed. When excluding exon 2 from the analysis, the diversity at the synonymous sites was found to be similar to the intron diversity. The overall diversity in noncoding region was also similar to the genome average. The DRB1*03 lineage has been found in human, chimpanzee, bonobo, gorilla, and orangutan. An ancestral "proto HLA-DRB1*03 lineage" appeared to have diverged in the last 5 million years into the human-specific lineages *08, *11, *13, and *14. With exception to exon 2, both the coding- and the noncoding diversity suggests a recent origin (<1 million years ago) for most of the alleles at the HLA-DRB1 locus. Sites encoding for amino acids involved in antigen binding [antigen recognizing sites (ARS)] appear to have a more ancient origin. Taken together, the recent origin of most alleles, the high diversity between allelic lineages, and the ancient origin of sequence motifs in exon 2, is consistent with a relatively rapid generation of novel alleles by gene conversion like events.  相似文献   

17.
18.
Muraoka M  Kawakita M  Ishida N 《FEBS letters》2001,495(1-2):87-93
A novel human nucleotide sugar transporter (NST) which transports both UDP-glucuronic acid (UDP-GlcA) and UDP-N-acetylgalactosamine (UDP-GalNAc) has been identified, cloned and characterized. The strategy for the identification of the novel NST involved a search of the expressed sequence tags database for genes related to the human UDP-galactose transporter-related isozyme 1, followed by heterologous expression of a candidate gene (hUGTrel7) in Saccharomyces cerevisiae and biochemical analyses. Significantly more UDP-GlcA and UDP-GalNAc were translocated from the reaction medium into the lumen of microsomes prepared from the hUGTrel7-expressing yeast cells than into the control microsomes from cells not expressing hUGTrel7. The possibility that this transporter participates in glucuronidation and/or chondroitin sulfate biosynthesis is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号