首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The respective role of alcohol dehydrogenase, of the microsomal ethanol-oxidizing system, and of catalase in ethanol metabolism was assessed quantitatively in liver slices using various inhibitors and ethanol at a final concentration of 50 mm. Pyrazole (2 mm) virtually abolished cytosolic alcohol dehydrogenase activity but inhibited ethanol metabolism in liver slices by only 50–60%. The residual pyrazole-insensitive ethanol oxidation in liver slices remained unaffected by in vitro addition of the catalase inhibitor sodium azide (1 mm). At this concentration, sodium azide completely abolished catalatic activity of catalase in liver homogenate as well as peroxidatic activity of catalase in liver slices in the presence of dl-alanine. Similarly, in vivo administration of 3-amino-1,2,4-triazole, a compound which inhibits the activity of catalase but not that of the microsomal ethanol-oxidizing system, failed to decrease both the overall rates of ethanol oxidation and the activity of the pyrazole-insensitive pathway. Finally, butanol, a substrate and inhibitor of the microsomal ethanol-oxidizing system but not of catalase-H2O2, significantly decreased the pyrazole-insensitive ethanol metabolism in liver slices. These results indicate that alcohol dehydrogenase is responsible for half or more of ethanol metabolism by liver slices and that the microsomal ethanol-oxidizing system rather than catalase-H2O2 accounts for most if not all of the alcohol dehydrogenase-independent pathway.  相似文献   

2.
Testicular ethanol-metabolizing enzymes (alcohol dehydrogenase, microsomal ethanol-oxidizing system, catalase) were investigated. Alcohol dehydrogenase was purified to homogeneity and its main kinetic parameters were analyzed. It was shown that alcohol dehydrogenase corresponds to class III isozymes and does not participate in ethanol oxidation. The testicular microsomal ethanol-oxidizing activity does not exceed 0.02 nmol/min/mg of protein. The activity of catalase and its peroxidase component is far lower in the testes than in the liver. On the whole, testicular tissue is rather inactive in respect of ethanol oxidation.  相似文献   

3.
Using head space chromatography, the pharmacological analysis of changes in the activity of ethanol-oxidizing enzymatic systems: alcohol dehydrogenase, catalase, microsomal ethanol-oxidizing system under the effect of pyrazole and aminotriazole, has been performed on the model of experimental alcoholism in rats. It was shown that the rate of ethanol elimination from the rats' blood at all stages of experimental alcoholism was determined by alcohol dehydrogenase, while catalase and microsomal ethanol-oxidizing system activities did not play an important role.  相似文献   

4.
Results of research into ethanol metabolism in yeast organisms with highly pronounced aerobic metabolism are reviewed. The low activity of NAD-dependent alcohol dehydrogenase (EC 1.1.1.1), observed under conditions of aerobic yeast growth on ethanol, demonstrates that alternative enzyme systems—alcohol oxidase (EC 1.1.3.13), microsomal ethanol-oxidizing system (including cytochrome P-450), and catalase (EC 1.11.1.6)—may be involved in the alcohol oxidation. The role of these systems in alcohol oxidation and the conditions favoring their operation in this processes are analyzed. It is concluded that iron ions are important regulators of ethanol metabolism for the microorganisms of this group.  相似文献   

5.
Results of research into ethanol metabolism in yeast organisms with highly pronounced aerobic metabolism are reviewed. The low activity of NAD-dependent alcohol dehydrogenase (EC 1.1.1.1), observed under the conditions of aerobic yeast growth on ethanol, demonstrates that alternative enzyme systems--alcohol oxidase (EC 1.1.3.13), microsomal ethanol-oxidizing system (including cytochrome P-450), and catalase (EC 1.11.1.6)--may be involved in the alcohol oxidation. The role of these systems in alcohol oxidation and conditions favoring their operation in this processes are analyzed. It is concluded that iron ions are important regulators of ethanol metabolism the microorganisms of this group.  相似文献   

6.
A method has been developed for estimating the sum of the contributions to ethanol oxidation by the microsomal ethanol-oxidizing system (MEOS) and catalase in the intact liver cell. It depends upon a comparison of the fate of the R hydrogen of ethanol and the hydrogen bound to carbon-2 of sorbitol under identical conditions. Limitations of the approach, particularly as regards isotopic effects, are defined. Under the condition of incubation of liver slices from rat and monkey at a concentration of ethanol of 3 mg/ml and from rat at 1 mg/ml, alcohol dehydrogenase catalysis is concluded to account, on the average, for 89% or more of the initial metabolism of ethanol. As by-products of this study, the stereospecificity of the sorbitol dehydrogenase-catalyzed reaction is shown to be of the A type in the rat, and evidence is obtained for the irreversibility of sorbitol oxidation in the intact liver cell.  相似文献   

7.
After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced oxidative stress: the increased MDA formation by incubated liver preparations, the absorption of conjugated dienes in mitochondrial and microsomal lipids and the decrease in the most unsaturated fatty acids in liver cell membranes are discussed. The formation of carbon-centered (1-hydroxyethyl) and oxygen-centered (hydroxyl) radicals during the metabolism of ethanol is considered: the generation of hydroxyethyl radicals, which occurs likely during the process of univalent reduction of dioxygen, is highlighted and is carried out by ferric cytochrome P450 oxy-complex (P450–Fe3+O2·−) formed during the reduction of heme-oxygen. The ethanol-induced lipid peroxidation has been evaluated, and it has been shown that plasma F2-isoprostanes are increased in ethanol toxicity.  相似文献   

8.
Oxidation of methanol, ethanol, propanol, and butanol by the microsomal fraction of rat liver homogenate is described. This microsomal alcohol-oxidizing system is dependent on NADPH and molecular oxygen and is partially inhibited by CO, features which are common for microsomal drug-metabolizing enzymes. The activity of the microsomal alcohol-oxidizing system could be dissociated from the alcohol peroxidation via catalase-H2O2 by differences in substrate specificity, since higher aliphatic alcohols react only with the microsomal system, but not with catalase-H2O2. Following solubilization of microsomes by ultrasonication and treatment with deoxycholate, the activity of the microsomal alcohol-oxidizing system was separated from contaminating catalase by DEAE-cellulose column chromatography, ruling out an obligatory involvement of catalase-H2O2 in the activity of the NADPH-dependent microsomal alcohol-oxidizing system. In intact hepatic microsomes, the catalase inhibitor sodium azide slightly decreased the oxidation of methanol and ethanol, but not that of propanol and butanol, indicating a facultative role of contaminating catalase in the microsomal oxidation of lower aliphatic alcohols only. It is suggested that the microsomal alcohol-oxidizing system accounts, at least in part, for that fraction of hepatic alcohol metabolism which is independent of the pathway involving alcohol dehydrogenase activity.  相似文献   

9.
When liver slices of Csa and Csb mice were incubated invitro, they had similar catalase activities and equal rates of ethanol metabolism. While incubated liver homogenates and microsomes from Csa mice oxidized ethanol and retained catalase activity, preparations from Csb mice did not oxidize ethanol and lost all catalase activity. Addition of beef liver catalase restored ethanol oxidation by Csb microsomes. The oxidations of aniline and aminopyrine proceeded at the same rate in Csa and Csb microsomes and were inhibited by ethanol. It is evident that (a) the microsomal drug-metabolizing pathway is not involved in ethanol oxidation, and (b) the postulation of a unique microsomal ethanol-oxidizing system (“MEOS”) that is independent of microsomal catalase is unwarranted.  相似文献   

10.
Stereospecificity of ethanol oxidation   总被引:1,自引:0,他引:1  
The stereospecificity of ethanol oxidation via alcohol dehydrogenase, the microsomal ethanol oxidizing system (MEOS) and catalase was determined using stereospecific ethanol-1-3H. All systems showed the same stereospecificity towards ethanol. All pathways displayed an isotope effect, but the effect with MEOS and catalase was greater than with alcohol dehydrogenase.  相似文献   

11.
Hepatic microsomes catalyze the oxidation of methanol, ethanol, propanol and butanol to their respective aldehydes. The reaction requires molecular oxygen and NADPH and is inhibited by CO, sharing thereby properties with other microsomal drug oxidations. This microsomal alcohol oxidizing system increases in activity after chronic ethanol consumption and operates independently from catalase as well as alcohol dehydrogenase. It appears responsible, at least in part, for the alcohol metabolism by the alcohol dehydrogenase independent pathway of the liver.  相似文献   

12.
Different pathways of alcohol metabolism, the alcohol dehydrogenase pathway, the microsomal ethanol-oxidizing system and the catalase pathway are discussed. Alcohol consumption leads to accelerated ethanol metabolism by different mechanisms including an increased microsomal function. Microsomal induction leads to interactions of ethanol with drugs, hepatotoxic agents, steroids, vitamins and to an increased activation of mutagens/carcinogens. A number of ethanol-related complications may be explained by the production of its first metabolite, acetaldehyde, such as alterations of mitochondria, increased lipid peroxidation and microtubular alterations with its adverse effects on various cellular activities, including disturbances of cell division. Nutritional factors in alcoholics such as malnutrition are discussed especially with respect to its possible relation to cancer.  相似文献   

13.
Pyrazole and 4-methylpyrazole, which are potent inhibitors of alcohol dehydrogenase, inhibited the oxidation of ethanol and of dimethyl sulfoxide by two model hydroxyl radical-generating systems. The systems used were the iron-catalyzed oxidation of ascorbic acid and the coupled oxidation of xanthine by xanthine oxidase. Pyrazole and 4-methylpyrazole were more effective inhibitors at lower substrate concentrations than at higher substrate concentrations; the oxidation of ethanol was inhibited to a greater extent than the oxidation of dimethyl sulfoxide. These results are consistent with competition between pyrazole or 4-methylpyrazole with the substrates for the generated hydroxyl radicals. Pyrazole and 4-methylpyrazole appear to be equally effective in reacting with hydroxyl radicals. An approximate rate constant of about 8 × 109m?1 s?1 was calculated from the inhibition curves, indicating that pyrazole and 4-methylpyrazole are potent scavengers of the hydroxyl radical. Previous studies have implicated a role for hydroxyl radicals in the microsomal pathway of ethanol oxidation. In the presence of azide (to inhibit catalase), pyrazole and 4-methylpyrazole inhibited the NADPH-dependent microsomal oxidation of ethanol, as well as several other hydroxyl radical-scavenging agents. This inhibition by pyrazole and by 4-methylpyrazole may reflect a mechanism involving competition for hydroxyl radicals generated by the microsomes. However, the kinetics of inhibition by pyrazole were mixed, not competitive, and pyrazole and 4-methylpyrazole also inhibited aminopyrine demethylase activity. Pyrazole has been shown by others to interact with cytochrome P-450. It is suggested that pyrazole and 4-methylpyrazole affect microsomal oxidation of ethanol via effects on the mixed-function oxidase system and via competition for the generated hydroxyl radicals. In view of these results, low concentrations of pyrazole and 4-methylpyrazole should be used in studies on pathways of alcohol metabolism, and caution should be made in interpreting the actions of these compounds when used at high concentrations.  相似文献   

14.
Ethanol oxidation activity has been reconstituted in a system composed of NADPH-cytochrome c reductase, synthetic dilauroylglycerol-3-phosphorylcholine and cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats. This system is free of alcohol dehydrogenase and catalase activities. Furthermore, sodium azide (1 mm), a catalase inhibitor, is without effect on ethanol metabolism. There is a requirement for both NADPH-cytochrome c reductase and cytochrome P-450 and a partial requirement for phospholipid for ethanol oxidation by the reconstituted system. In addition, both NADPH and O2 are required for catalysis. Under optimal reaction conditions, the rate of acetaldehyde formation if 25 to 50 nmol/min/nmol of cytochrome P-450. Cytochrome P-450 from other sources, including the homogeneous P-450LM2 from phenobarbital-treated rabbits, have also been found to catalyze ethanol oxidation in reconstituted systems. Antibody prepared against cytochrome P-450 inhibits ethanol metabolism in the reconstituted system consistent with a cytochrome P-450-mediated reaction. Furthermore, cumene hydroperoxide can replace both NADPH and NADPH-cytochrome c reductase in ethanol oxidation and catalysis can be demonstrated in a system composed of only cytochrome P-450, lipid, ethanol, and cumene hydroperoxide. These data implicate cytochrome P-450 in the direct oxidation of ethanol by this system.  相似文献   

15.
Effects of chronic alcohol treatment have been investigated on the rates of extramitochondrial NADH utilization by hepatic mitochondria in the presence or absence of “malate-aspartate shuttle,” oxidation of ethanol, α-glycerophosphate, and the activity of succinic dehydrogenase, along with the changes in the intrahepatic distribution of aspartate aminotransferase. The rates of blood alcohol clearance, hepatic alcohol dehydrogenase activity, and NADPH-dependent microsomal ethanol oxidation were also studied after different time intervals of alcohol withdrawal from chronically alcohol-fed animals. Hepatic mitochondria from chronically ethanol-fed mice (ethanol withheld 20 hr before sacrifice) utilized extramitochondrial NADH at rates 25–40% higher than the corresponding pair-fed controls. Addition of malateaspartate shuttle components to mitochondria from control and ethanol-fed groups resulted in 70 and 90% stimulation of NADH utilization, respectively. Mitochondria from both groups showed respiratory control upon ADP addition (state 3). Preincubation with amino-oxyacetate or hydrazine, which inhibit aspartate aminotransferase activity, prevented the stimulatory effect of malate-aspartate shuttle on NADH utilization. Mitochondria from livers of chronic ethanol-fed mice in the presence of reconstituted malate-aspartate shuttle showed 30–40% higher utilization of ethanol than the corresponding pair-fed control animals. The rate of mitochondrial α-glycerophosphate utilization by alcohol-fed animals was significantly higher than the control group. Succinic dehydrogenase activity measured as an index of mitochondrial permeability in the absence of Ca2+ showed 85% higher activity in alcoholtreated group than the control animals. Chronic ethanol feeding for 4 weeks resulted in an increase in the activity of hepatic aspartate aminotransferase in the cytoplasmic fraction and a corresponding decrease in the mitochondrial fraction. Alcohol withdrawal from chronic alcohol-fed animals resulted in a decrease in the blood alcohol clearance rate after 10 days. Furthermore, a lack of correlation was observed between the rates of blood alcohol clearance and the activity of hepatic alcohol dehydrogenase on one hand, and between the rates of blood alcohol clearance and the microsomal ethanol-oxidizing activity on the other.  相似文献   

16.
Rat liver microsomes oxidized ethanol two to three times faster than propanol when incubated with either an NADPH- or an H2O2-generating system. In addition, solubilized, purified microsomal subfractions were found to contain protein with an electrophoretic mobility identical to rat liver catalase on SDS polyacrylamide gels, suggesting that the separation of catalase from cytochrome P-450 and other microsomal components may not be feasible. These data support the postulate that catalase is responsible for NADPH-dependent microsomal ethanol oxidation. Direct read-out techniques for pyridine nucleotides, the catalase-H2O2 complex, and cytochrome P-450 were utilized to evaluate the specificity of inhibitors of alcohol dehydrogenase (4-methylpyrazole; 4 mM) and catalase (aminotriazole; 1.0 g/kg) qualitatively in perfused rat livers. 4-Methylpyrazole and aminotriazole are specific inhibitors for alcohol dehydrogenase and catalase, respectively, under these conditions. Neither inhibitor nor a combination of them altered the mixed function oxygen of p-nitroanisole to p-nitrophenol as observed by oxygen uptake and product formation. When ethanol utilization was measured over the concentration range 20-80 mM in perfused liver, a concentration dependence was observed. At low concentrations of ethanol, ethanol oxidation was almost totally abolished by 4-methylpyrazole; however, the contribution of 4-methylpyrazole-insensitive ethanol uptake increased as a function of ethanol concentration. At 80 mM ethanol, ethanol utilization was nearly 50% methylpyrazole-insensitive. This portion of ethanol oxidation, however, was abolished by aminotriazole. The data indicate that alcohol dehydrogenase and catalase-H2O2 are responsible for hepatic ethanol oxidation. At low ethanol concentrations (less than 20 mM), alcohol dehydrogenase is predominant; however, at higher ethanol concentrations (up to 80 mM), the contribution of catalase-H2O2 to overall ethanol utilization is significant. No evidence that the endoplasmic reticulum is involved in ethanol metabolism in the perfused liver emerged from these studies.  相似文献   

17.
The NAD-dependent oxidation of ethanol, 2,3-butanediol, and other primary and secondary alcohols, catalyzed by alcohol dehydrogenases derived from Penicillium charlesii, was investigated. Alcohol dehydrogenase, ADH-I, was purified to homogeneity in a yield of 54%. The enzyme utilizes several primary alcohols as substrates, with Km values of the order of 10?4m. A Km value of 60 mm was obtained for R,R,-2,3-butanediol. The stereospecificity of the oxidation of 2-butanol was investigated, and S-(+)-2-butanol was found to be oxidized 2.4 times faster than was R-(?)-2-butanol. The reduction of 2-butanone was shown to produce S-(+)-2-butanol and R-(?)-butanol in a ratio of 7:3. ADH-I is the primary isozyme of alcohol dehydrogenase present in cultures utilizing glucose as the sole carbon source. The level of alcohol dehydrogenase activity increased 7.6-fold in mycelia from cultures grown with glucose and 2,3-butanediol (0.5%) as carbon sources compared with the activity in cultures grown on only glucose. Two additional forms of alcohol dehydrogenase, ADH-II and ADH-III, were present in the cultures supplemented with 2,3-butanediol. These forms of alcohol dehydrogenase catalyze the oxidation of ethanol and 2,3-butanediol. These data suggest that P. charlesii carries out an oxidation of 2,3-butanediol which may constitute the first reaction in the degradation of 2,3-butanediol as well as the last reaction in the mixed-acid fermentation. Alcohol dehydrogenase activities in P. charlesii may be encoded by multiple genes, one which is expressed constitutively and others whose expression is inducible by 2,3-butanediol.  相似文献   

18.
Ethanol metabolism was studied in isolated hepatocytes of fed and fasted guinea pigs. Alcohol dehydrogenase (EC 1.1.1.1) activities of fed or fasted liver cells were 2.04 and 1.88 μmol/g cells/min, respectively. Under a variety of in vitro conditions, alcohol dehydrogenase operates in fed hepatocytes at 34–74% and in fasted liver cells at 23–61% of its maximum velocity, respectively. Hepatocytes of fed animals, incubated in Krebs-Ringer bicarbonate buffer, oxidized ethanol at an average rate of 0.69 μmol/g wet weight cells/min, whereas cells of 48-h fasted animals consumed only 0.44 μmol/g/min under identical conditions. Various substrates and metabolites of intermediary metabolism significantly enhanced ethanol oxidation in fed liver cells. Maximum stimulatory effects were achieved with alanine (+138%) and pyruvate (+102%), followed in decreasing order by propionate, lactate, fructose, dihydroxyacetone, and galactose. In contrast to substrate couples such as lactate/pyruvate and glycerol/dihydroxyacetone, sorbitol with or without fructose significantly inhibited ethanol oxidation. The addition of hydrogen shuttle components such as malate, aspartate, or glutamate to fasted hepatocytes resulted in significantly higher stimulation of ethanol uptake than in fed hepatocytes. Also, the degree of inhibition of shuttle activity by n-butylmalonate was more pronounced in fasted liver cells (77% inhibition) than in fed cells (59% inhibition). These data as well as oxygen kinetic studies in intact guinea pig hepatocytes utilizing uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, dinitrophenol), electron-transport inhibitors (rotenone, antimycin), and malate-aspartate shuttle inhibitors (aminooxyacetate, n-butylmalonate) strongly suggested that the malate-aspartate shuttle is the predominant hydrogen transport system during ethanol oxidation in guinea pig liver.Comparison of the alcohol dehydrogenase-inhibitors 4-methylpyrazole and pyrazole on ethanol oxidation demonstrated that the alcohol dehydrogenase system is quantitatively the most important alcohol-metabolizing pathway in guinea pig liver. Supporting this conclusion, it was found that the H2O2-forming substrate glycolate slightly increased ethanol oxidation in liver cells of control animals (+26%), but prior inhibition of catalase by 3-amino-1,2,4-triazole resulted in a significant increase (+25%) instead of a decrease in alcohol oxidation. This finding does not support a quantitatively important role of peroxidatic oxidation of ethanol by catalase in liver.Cytosolic NADNADH ratios were greatly shifted toward reduction during ethanol oxidation. These reductive shifts were even more pronounced when cells were incubated in the presence of fatty acids (octanoate, oleate) plus ethanol. Inhibitor studies with 4-methylpyrazole demonstrated that the decrease of the cytosolic NADNADH ratio during fatty acid oxidation was due to an inhibition of hydrogen transport from cytosol to mitochondria and not the result of transfer of hydrogen, generated by fatty acid oxidation, from mitochondria to cytosol. Lactate plus pyruvate formation was slightly inhibited by ethanol in fed hepatocytes but greatly accelerated in fasted cells; this latter effect was mostly the result of increased lactate formation. Such regulation may represent a hepatic mechanism of alcoholic lactic acidosis as observed in human alcoholics. The ethanol-induced decrease of the mitochondrial NADNADH ratio was prevented by addition of 4-methylpyrazole. Endogenous ketogenesis was greatly increased (+80%) by ethanol in fed liver cells. This effect of ethanol was blunted in the presence of glucose. Propionate, by competing with fatty acid oxidation, was strongly antiketogenic. This effect was alleviated by ethanol. In 48-h fasted hepatocytes, endogenous ketogenesis was enhanced by 84%. Although ethanol did not further stimulate endogenous ketogenesis under these conditions, alcohol significantly increased ketogenesis in the presence of octanoate or oleate. This stimulatory effect of ethanol was almost completely prevented by 4-methylpyrazole. These findings demonstrate that the syndrome of alcoholic ketoacidosis may be due, at least partially, to the additional stimulation of ketogenesis by or from ethanol during fatty acid oxidation in the fasting state.  相似文献   

19.
Superoxide dismutase, a scavenger of O?2. does not affect the rate of ethanol oxidation in a reconstituted system containing purified cytochrome P-450, NADPH-cytochrome c reductase, and dilauroyl l-3-phosphatidyl choline. The same concentration of Superoxide dismutase (50 μg/ml) completely abolishes the oxidation of epinephrine in this reconstituted system and ethanol oxidation by the xanthine-xanthine oxidase. Ethanol is not oxidized by the reconstituted system when NADPH is replaced by H2O2 but the addition of H2O2 to this sytem containing NADPH accelerates ethanol oxidation. This increase is abolished by the addition of Superoxide dismutase. Hydroxyl radical scavengers (50 mm dimethylsulfoxide, 100 mm benzoate, 100 mm mannitol, 20 mm thiourea) diminish the oxidation of ethanol in the reconstituted system by 48 to 76%. Thus hydroxyl radical may participate in the activity of reconstituted ethanol-oxidizing system, whereas Superoxide is not involved.  相似文献   

20.
Alcohol dehydrogenase from horse liver was reductively alkylated with aldehydes having varied alkyl substituents. Kinetic studies of alkylated liver alcohol dehydrogenases which were modified in the absence and in the presence of NADH indicate that the alkylation of the specific lysine residues generally activates the enzyme by increasing Michaelis and inhibition constants for substrates and maximum velocities for the reactions. These kinetic parameters were analyzed in terms of electronic, steric, and hydrophobic effects of alkyl substituents. The hydrophilic character of the lysine residues is the most important factor which affects all kinetic parameters, particularly Kia and V2. In addition, the nucleophilic character of the lysine residues enhances the enzyme activity by increasing the maximum velocity of ethanol oxidation and the affinity of alcohol dehydrogenase for NADH and acetaldehyde. The steric interaction at the lysine residues favors the affinity of the enzyme for NADH and ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号