首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postural control system has two main functions: first, to build up posture against gravity and ensure that balance is maintained; and second, to fix the orientation and position of the segments that serve as a reference frame for perception and action with respect to the external world. This dual function of postural control is based on four components: reference values, such as orientation of body segments and position of the center of gravity (an internal representation of the body or postural body scheme); multisensory inputs regulating orientation and stabilization of body segments; and flexible postural reactions or anticipations for balance recovery after disturbance, or postural stabilization during voluntary movement. The recent data related to the organization of this system will be discussed in normal subjects (during ontogenesis), the elderly and in patients with relevant deficits.  相似文献   

2.
Research that evaluated both static and dynamic stability was performed, to clarify the impact of excessive body weight on postural control. The spontaneous center of foot pressure (CP) motion during quiet stance and a range of forward voluntary CP displacements were studied in 100 obese, and 33 lean women. Characteristics of postural sway were acquired while the subjects were standing quiet on a force plate with eyes open (EO) and with eyes closed (EC). Their anterior range of CP voluntary displacements was assessed upon a range of maximal whole body leanings which were directed forward. A substantial reduction of postural sway was observed in all patients which had increased body weight. Main postural sway parameters i.e., the total path length as well as its directional components were negatively correlated with the body mass and body mass index (BMI). The range of a whole body voluntary forward leaning, did not exhibit any significant change in patients with an obesity grade of I and II. Such a deficit was, however, found in subjects with a body mass index above 40. In conclusion, the increased body weight imposed new biomechanical constraints, that resulted in functional adaptation of the control of the erect posture. This functional adaptation was characterized by a reduced postural sway associated with a substantial reduction of the dynamic stability range in subjects with BMI>40.  相似文献   

3.
Many of our motor activities require stabilization against external disturbances. This especially applies to biped stance since it is inherently unstable. Disturbance compensation is mainly reactive, depending on sensory inputs and real-time sensor fusion. In humans, the vestibular system plays a major role. When there is no visual space reference, vestibular-loss clearly impairs stance stability. Most humanoid robots do not use a vestibular system, but stabilize upright body posture by means of center of pressure (COP) control. We here suggest using in addition a vestibular sensor and present a biologically inspired vestibular sensor along with a human-inspired stance control mechanism. We proceed in two steps. First, in an introductory review part, we report on relevant human sensors and their role in stance control, focusing on own models of transmitter fusion in the vestibular sensor and sensor fusion in stance control. In a second, experimental part, the models are used to construct an artificial vestibular system and to embed it into the stance control of a humanoid. The robot’s performance is investigated using tilts of the support surface. The results are compared to those of humans. Functional significance of the vestibular sensor is highlighted by comparing vestibular-able with vestibular-loss states in robot and humans. We show that a kinematic body-space sensory feedback (vestibular) is advantageous over a kinetic one (force cues) for dynamic body-space balancing. Our embodiment of human sensorimotor control principles into a robot is more than just bionics. It inspired our biological work (neurorobotics: ‘learning by building’, proof of principle, and more). We envisage a future clinical use in the form of hardware-in-the-loop simulations of neurological symptoms for improving diagnosis and therapy and designing medical assistive devices.  相似文献   

4.
The research field of legged robots has always relied on the bionic robotic research,especially in locomotion regulating approaches,such as foot trajectory planning,body stability regulating and energy efficiency prompting.Minimizing energy consumption and keeping the stability of body are considered as two main characteristics of human walking.This work devotes to develop an energy-efficient gait control method for electrical quadruped robots with the inspiration of human walking pattern.Based on the mechanical power distribution trend,an efficient humanoid power redistribution approach is established for the electrical quadruped robot.Through studying the walking behavior acted by mankind,such as the foot trajectory and change of mechanical power,we believe that the proposed controller which includes the bionic foot movement trajectory and humanoid power redistribution method can be implemented on the electrical quadruped robot prototype.The stability and energy efficiency of the proposed controller are tested by the simulation and the single-leg prototype experi-ment.The results verify that the humanoid power planning approach can improve the energy efficiency of the electrical quadruped robots.  相似文献   

5.
Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that many biological organisms reduce the high dimensionality of their action space by generating movements through linear superposition of a rather small number of stereotypical combinations of simultaneous movements of many joints, to which we refer as kinematic synergies in this paper. We show that by constructing two suitable non-linear kinematic synergies for the lower part of the body of a humanoid robot, balance control can in fact be reduced to a linear control problem, at least in the case of relatively slow movements. We demonstrate for a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the capability to balance dynamically against unforeseen disturbances that may arise from external forces or from manipulating unknown loads.  相似文献   

6.

A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

7.
Comparison of human and humanoid robot control of upright stance   总被引:1,自引:0,他引:1  
There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to 1 Hz) dynamic characteristics of human stance control. These subsystems are (1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different.  相似文献   

8.
Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the mechanical stability of the organism changes, but the degree to which this alters the demands on neural feedback control for postural stability is unknown. We developed a robotic system that mimics the neuromechanical postural control system of a cat in response to lateral perturbations. This simple robotic system allows us to study the interactions between various parameters that contribute to postural stability and cannot be independently varied in biological systems. The robot is a 'planar', two-legged device that maintains compliant balance control in a variety of stance widths when subject to perturbations of the support surface, and in this sense reveals principles of lateral balance control that are also applicable to bipeds. Here we demonstrate that independent variations in either stance width or delayed neural feedback gains can have profound and often surprisingly detrimental effects on the postural stability of the system. Moreover, we show through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.  相似文献   

9.
A basal ganglia central pattern generator (CPG) is developed and its role in voluntary movements on the ground and postural reactions on a disturbed platform are studied and analysed by simulation. Biped dynamics and platform kinematics are utilised. The effects of agonist–antagonist muscular co-activation and joint stiffness are formulated. The implementation of the necessary counter-manoeuvres for maintaining balance and postural stability is studied. A control strategy, applicable to large systems, is formulated. The biped manoeuvres and transitions terminate in pre-specified intervals of time. Gravity is included and compensated for. Certain voluntary and postural adjustment strategies are the same but are initiated differently. Further experimental/computational research may identify the central nervous system and sensory paths that lead to the CPG. All actuator forces linearly evolve in time from their original values to their terminal values. There are no central continuous feedback loops present. Monitoring and sensing, however, are ongoing. The counter-manoeuvres are based on learned human-like voluntary movements that are triggered by the disturbance. The required central inputs to the musculoskeletal system are designed in the CPG. A functional structure for the CPG is proposed. The effect of certain disorders and malfunctions of the CPG are studied by simulation.  相似文献   

10.
Optic flow is a crucial signal in maintaining postural stability. We sought to investigate whether the activity of postural muscles and body sway was modulated by eye position during the view of radial optic flow stimuli. We manipulated the spatial distribution of dot speed and the fixation point position to simulate specific heading directions combined with different gaze positions. The experiments were performed using stabilometry and surface electromyography (EMG) on 24 right-handed young, healthy volunteers. Center of pressure (COP) signals were analyzed considering antero-posterior and medio-lateral oscillation, COP speed, COP area, and the prevalent direction of oscillation of body sway. We found a significant main effect of body side in all COP parameters, with the right body side showing greater oscillations. The different combinations of optic flow and eye position evoked a non-uniform direction of oscillations in females. The EMG analysis showed a significant main effect for muscle and body side. The results showed that the eye position modulated body sway without changing the activity of principal leg postural muscles, suggesting that the extraretinal input regarding the eye position is a crucial signal that needs to be integrated with perceptual optic flow processing in order to control body sway.  相似文献   

11.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

12.
A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

13.
The human biped walking shows phase- dependent transient changes in gait trajectory in response to external brief force perturbations. Such responses, referred to as the stumbling reactions, are usually accompanied with phase reset of the walking rhythm. Our previous studies provided evidence, based on a human gait experiment and analyses of mathematical models of gait in the sagittal plane, that an appropriate amount of phase reset in response to a perturbation depended on the gait phase at the perturbation and could play an important role for preventing the walker from a fall, thus increasing gait stability. In this paper, we provide a further material that supports this evidence by a gait experiment on a biped humanoid. In the experiment, the impulsive force perturbations were applied using push-impacts by a pendulum-like hammer to the back of the robot during gait. The responses of the external perturbations were managed by resetting the gait phase with different delays or advancements. The results showed that appropriate amounts of phase resetting contributed to the avoidance of falling against the perturbation during the three-dimensional robot gait. A parallelism with human gait stumbling reactions was discussed.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
The influence of breath holding and voluntary hyperventilation on the traditional stabilometric parameters and the frequency characteristics of stabilographic signal was studied. We measured the stabilometric parameters on a force platform (“Ritm”, Russia) in the 107 healthy volunteers during quiet breath, voluntary hyperventilation (20 seconds) and maximal inspiratory breath holding (20 seconds). Respiratory frequency, respiratory amplitude and ventilation were estimated with the strain gauge. We found that antero-posterior and medio-lateral sway amplitude and velocity as well as sway surface during breath holding and during quiet breathing were the same, so breath holding didn’t influence the postural stability. However, the spectral parameters in the antero-posterior direction shifted to the high frequency range due to an alteration of the respiratory muscles’ contractions during breath holding versus quiet breath. Voluntary hyperventilation caused a significant increase of all stabilographic indices that implied an impairment of the postural stability. We also found that the spectral indices shifted toward the high-frequency range, and this shift was much greater compared to that during breath holding. Besides, amplitudes of the spectral peaks also increased. Perhaps, such change of the spectral indices was due to distortion of the proprioceptive information because of increased excitability of the nerve fibers during hyperventilation. Maximal inspiratory breath holding caused an activation of the postural control mechanisms. It was manifested as an elevation of the sway oscillations’ frequency with no postural stability changes. Hyperventilation led to the greatest strain of the postural control and to a decrease of the postural stability, which was manifested as an increase of center of pressure oscillations’ amplitude and frequency.  相似文献   

15.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

16.
The postural system maintains a specific body orientation and equilibrium during standing and during locomotion in the presence of many destabilizing factors (external and internal). Numerous studies in humans have revealed essential features of the functional organization of this system. Recent studies on different animal models have significantly supplemented human studies. They have greatly expanded our knowledge of how the control system operates, how the postural functions are distributed within different parts of CNS, and how these parts interact with each other to produce postural corrections and adjustments. This review outlines recent advances in the studies of postural control in quadrupeds, with special attention given the neuronal postural mechanisms.  相似文献   

17.
Postural reflexes are replaced soon after birth by automatic reactions that allow for volition and cognition. It is still an enigma how this change in postural control is achieved. We suggest that the change involves the formation of a sensory processing level (meta level) that becomes interleaved in between the tight sensor-actuator coupling of the classic reflexes. We assume that the brain applies at this level intersensory interactions to reconstruct the physical stimuli which are causing the physiological stimuli and sensory signals. The thus derived estimates of the physical stimuli are then used as feedback signals in the posture control system. We present this concept on the background of the classic reflex concept and earlier attempts in the literature to overcome it. The earlier attempts were often motivated by the question how the brain prevents voluntary movements from being hampered by reflexive stabilisation of posture (so-called posture-movement problem). We compare our new concept with the classic reflex concept in a theoretical approach, by implementing both concepts into simple postural control models. In simulations of the two models we superimpose external perturbations (the physical stimuli) and a voluntary body lean movement. We show that it is possible to achieve successful stimulus compensation and unperturbed lean movement with both, the model derived from the new concept and the one of the classic reflex concept. With both approaches, the posture-movement problem does not arise. Based on preliminary considerations that include experimental findings from the literature, however, we conclude that the new concept provides more explanatory power than the classic reflex concept.  相似文献   

18.
An accurate modeling of human stance might be helpful in assessing postural deficit. The objective of this article is to validate a mathematical postural control model for quiet standing posture. The postural dynamics is modeled in the sagittal plane as an inverted pendulum with torque applied at the ankle joint. The torque control system is represented by the physiological lambda model. Two neurophysiological command variables of the central nervous system, designated and , establish the dynamic threshold muscle at which motoneuron recruitment begins. Kinematic data and electromyographic signals were collected on four young males in order to measure small voluntary sway and quiet standing posture. Validation of the mathematical model was achieved through comparison of the experimental and simulated results. The mathematical model allows computation of the unmeasurable neurophysiological commands and that control the equilibrium position and stability. Furthermore, with the model it is possible to conclude that low-amplitude body sway during quiet stance is commanded by the central nervous system.  相似文献   

19.
The capability for the unconscious control of the upright posture in elderly people is impaired, which increases the risk of falls and traumata. The impairment of the unconscious control of posture is partially compensated by the fixation of voluntary attention on the maintenance of an appropriate posture. Elderly people fall predominantly during the performance of movements that demand additional voluntary postural control, for example, unstable support conditions. Thus, voluntary postural control assumes importance in elderly persons. Since it is unclear whether this function changes with age, the aim of this work was to study age-related features of the learning voluntary postural control using visual feedback by center-of-pressure position. The results of the study showed that voluntary postural control is a complex multicomponent process that includes, at least, the following functions: selection of a strategy of postural control, its actualization, and precision of its regulation. With aging, strategy selection in healthy people impairs, but both elderly and middle-aged people can learn this function as successfully as the young. At the same time, despite the absence of an initial deficit in the accuracy of postural setting in elderly people, training of this function becomes substantially more difficult with age.  相似文献   

20.
A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior–posterior and medial–lateral directions. The human body was represented as a two-segment inverted pendulum. Several assumptions were made to linearise body dynamics, for example, that there was no transverse rotation during upright stance. The neural controller was presumed to be an optimal controller that generates ankle control torque and hip control torque according to certain performance criteria. An optimisation procedure was used to determine the values of unspecified model parameters including random disturbance gains and sensory delay times. This model was used to simulate postural sway behaviours characterised by centre-of-pressure (COP)-based measures. Confidence intervals for all normalised COP-based measures contained unity, indicating no significant differences between any of the simulated COP-based measures and corresponding experimental references. In addition, mean normalised errors for the traditional measures were < 8%, and those for most statistical mechanics measures were ~3–66%. On the basis these results, the proposed 3D balance control model appears to have the ability to accurately simulate 3D postural sway behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号