首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme’s active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Alois Bonifacio, André R. Groenhof and Peter H. J. Keizers contributed equally to this work.  相似文献   

2.
Studies were designed to investigate various anions and their effects on cytochrome P450 2D6-mediated metabolism in vitro. Incubations were initially performed in buffered phosphate, carbonate, sulfate, and acetate solutions (50mM, pH 7.4), with CYP2D6 substrates dextromethorphan, 7-methoxy-4-(aminomethyl)-coumarin (MAMC), (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride [(-)-OSU6162], and amitriptyline. Dextromethorphan and MAMC O-dealkylation activity in buffered carbonate was approximately 25 and 38%, respectively, relative to phosphate, while activity in sulfate and acetate buffers displayed minor differences. In contrast, N-dealkylation reactions for both (-)-OSU6162 and amitriptyline were unaffected by the presence of carbonate, and the other anions tested. Subsequent kinetic studies revealed that the basis of reduced turnover of dextromethorphan was primarily a V(max) effect, as the V(max) for the rate was 16.9 and 5.6 pmol/min/pmol P450 in phosphate and carbonate, respectively. Interestingly, similar rates of dextromethorphan O-demethylation in phosphate and carbonate were observed when reactions were supported by cumene hydroperoxide (CuOOH). Furthermore, it was observed that while CuOOH could equally support dextromethorphan O-demethylation compared to NADPH, amitriptyline N-demethylation was only minimally supported. Finally, intramolecular kinetic isotope effect (KIE) experiments with amitriptyline-d3 in CuOOH-supported reactions yielded a k(H)/k(D) of 5.2, substantially higher than in phosphate and carbonate supported by NADPH (k(H)/k(D)=1.5). Overall, results suggest that carbonate disrupts the relative ratios of the potential P450 oxygenating species, which differentially catalyze O- and N-dealkylation reactions mediated by CYP2D6.  相似文献   

3.
Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.  相似文献   

4.
Yun CH  Miller GP  Guengerich FP 《Biochemistry》2001,40(14):4521-4530
Human cytochrome P450 (P450) 1A2 is involved in the oxidation of many important drugs and carcinogens. The prototype substrate phenacetin is oxidized to an acetol as well as the O-dealkylation product [Yun, C.-H., Miller, G. P., and Guengerich, F. P. (2000) Biochemistry 39, 11319-11329]. In an effort to improve rates of catalysis of P450 1A2 enzymes, we considered a set of p-alkoxyacylanilide analogues of phenacetin and found that variations in the O-alkyl and N-acyl substituents altered the rates of the two oxidation reactions and the ratio of acetol/phenol products. Moving one methylene group of phenacetin from the O-alkyl group to the N-acyl moiety increased rates of both oxidations approximately 5-fold and improved the coupling efficiency (oxidation products formed/NADPH consumed) from 6% to 38%. Noncompetitive kinetic deuterium isotope effects of 2-3 were measured for all O-dealkylation reactions examined with wild-type P450 1A2 and the E225I mutant, which has 6-fold higher activity. A trend of decreasing kinetic deuterium isotope effect for E225I > wild-type > mutant D320A was observed for O-demethylation of p-methoxyacetanilide, which follows the trend for k(cat). The set of O-dealkylation and acetol formation results for wild-type P450 1A2 and the E225I mutant with several of the protiated and deuterated substrates were fit to a model developed for the basic catalytic cycle and a set of microscopic rate constants in which the only variable was the rate of product formation (substrate oxygenation, including hydrogen abstraction). In this model, k(cat) is considerably less than any of the microscopic rate constants and is affected by several individual rate constants, including the rate of formation of the oxygenating species, the rate of substrate oxidation by the oxygenating species, and the rates of generation of reduced oxygen species (H(2)O(2), H(2)O). This analysis of the effects of the individual rate constants provides a framework for consideration of other P450 reactions and rate-limiting steps.  相似文献   

5.
Daidzein is a major component of isoflavones, and its hydroxylated forms are valuable phytochemicals with anti-cancer and anti-oxidant activity. Due to the limitations of chemical synthesis of these hydroxylated structures, alternative enzymatic synthesis has been attempted. Previously, several protein-engineering approaches using CYP102D1 were investigated; these produced mutants with daidzein hydroxylation activity and regioselectivity through rational design (F96V/M246I) and saturation mutagenesis (A273H/G274E/T277G). However, the generated mutants have low regioselectivity (F96V/M246I) or low hydroxylation activity (A273H/G274E/T277G). Here, we characterized mutants capable of catalyzing C3′-specific daidzein hydroxylation with enhanced hydroxylation activity and regioselectivity. In order to obtain regioselectivity toward the daidzein C3′-position, site-saturation mutagenesis on the substrate-binding region of CYP102D1 F96V/M246I was investigated. A high-throughput screening assay was then performed, based on O-dealkylation activity against the daidzein analog substrate 4′-O-methyl-daidzein. This resulted in a mutant with more than 23-fold improved hydroxylation activity (55.6 ± 17.9 μM−1 min−1, or 48.4 mg/L titer) and regioselectivity over the 3′/6-position that was increased by three-fold (from 0.9 to 2.6) compared with the F96V/M246I template enzyme. Furthermore, we carried out docking simulation studies that could partially explain the effects of these mutations on C3′-specific hydroxylation activity.  相似文献   

6.
Recent reports have identified Phe120, Asp301, Thr309, and Glu216 as important residues in cytochrome P450 2D6 (CYP2D6) substrate binding and catalysis. Complementary homology models have located these amino acids within the binding pocket of CYP2D6 and in the present study we have used aryldiazenes to test these models and gain further insight in the role these amino acids have in maintaining the integrity of the active site cavity. When Phe120 was replaced to alanine, there was a significant increase in probe migration to pyrrole nitrogens C and D, in agreement with homology models which have located the phenyl side-chain of Phe120 above these two pyrrole rings. No changes in topology were observed with the D301Q mutant, supporting claims that in this mutant the electrostatic interactions with the B/C-loop are largely maintained and the loop retains its native orientation. The T309V mutation resulted in significant topological alteration suggesting that, in addition to its potential role in dioxygen activation, Thr309 plays an important structural role within the active site crevice. Replacement of Ile106 with Glu, engineered to cause electrostatic repulsion with Glu216, had a profound topological effect in the higher region within the active site cavity and impaired the catalytic activity towards CYP2D6 probe substrates.  相似文献   

7.
The organic hydroperoxide cumene hydroperoxide is capable of oxidizing ethanol to acetaldehyde in the presence of either catalase, purified cytochrome P-450 or rat liver microsomes. Other hemoproteins like horseradish peroxidase, cytochrome c or hemoglobin were ineffective. In addition to ethanol, higher alcohols like 1-propanol, 1-butanol and 1-pentanol are also oxidized to their corresponding aldehydes to a lesser extent. Other organic hydroxyperoxides will replace cumene hydroperoxide in oxidizing ethanol but less effectively. The cumene-hydroperoxide-dependent ethanol oxidation in microsomes was inhibited partially by cytochrome P-450 inhibitors but was unaffected by catalase inhibitors. Phenobarbital pretreatment of rats increased the specific activity of the cumene-hydroperoxide-dependent ethanol oxidation per mg of microsomes about seven-fold. The evidence suggests that cytochrome P-450 rather than catalase is the enzyme responsible for hydroperoxide-dependent ethanol oxidation. However, when H2O2 is used in place of cumene hydroperoxide, the microsomal ethanol oxidation closely resembles the catalase system.  相似文献   

8.
CYP102A1, originating from Bacillus megaterium, is a highly active enzyme which has attracted much attention because of its potential applicability as a biocatalyst for oxidative reactions. Previously we developed drug-metabolizing mutant CYP102A1 M11 by a combination of site-directed and random mutagenesis. CYP102A1 M11 contains eight mutations, when compared with wild-type CYP102A1, and is able to produce human-relevant metabolites of several pharmaceuticals. In this study, active-site residue 87 of drug-metabolizing mutant CYP102A1 M11 was mutated to all possible natural amino acids to investigate its role in substrate selectivity and regioselectivity. With alkoxyresorufins as substrates, large differences in substrate selectivities and coupling efficiencies were found, dependent on the nature of residue 87. For all combinations of alkoxyresorufins and mutants, extremely fast rates of NADPH oxidation were observed (up to 6,000 min−1). However, the coupling efficiencies were extremely low: even for the substrates showing the highest rates of O-dealkylation, coupling efficiencies were lower than 1%. With testosterone as the substrate, all mutants were able to produce three hydroxytestosterone metabolites, although with different activities and with remarkably different product ratios. The results show that the nature of the amino acid at position 87 has a strong effect on activity and regioselectivity in the drug-metabolizing mutant CYP102A1 M11. Because of the wide substrate selectivity of CYP102A1 M11 when compared with wild-type CYP102A1, this panel of mutants will be useful both as biocatalysts for metabolite production and as model proteins for mechanistic studies on the function of P450s in general.  相似文献   

9.
The inactivations of P450 2B4 and the T302A mutant of 2B4 by tert-butyl acetylene (tBA) and the inactivation of 2B4 T302A by tert-butyl 1-methyl-2-propynyl ether (tBMP) have been investigated. tBA and tBMP inactivated both enzymes in a mechanism-based manner with the losses in enzymatic activity corresponding closely to losses in P450 heme. HPLC and ESI-LC-MS analysis detected two different tBA- or tBMP-modified heme products with masses of 661 and 705 Da, respectively. Interestingly, the inactivations of the P450s 2B4 by tBA and tBMP were partially reversible by dialysis, and the tBA- or tBMP-modified heme products could only be observed with ESI-LC-MS/MS when the inactivated samples were acidified prior to analysis, indicating a requirement for protons in the formation of stable heme adducts in both the wild-type and mutant 2B4 enzymes. Results of studies using artificial oxidants to support enzyme inactivation suggest that the oxenoid-iron activated oxygen species is preferentially utilized during the inactivation of the P450s 2B4 by tBA. These results argue against the use of a peroxo-iron species by P450 2B4 T302A. Molecular dynamics studies of wild-type P450 2B4 reveal that contiguous hydrogen bond networks, including structural waters, link a conserved glutamate (E301) to the distal oxygen of the peroxo-heme species via threonine 302. Interestingly, models of 2B4 T302A reveal that a compensatory, ordered hydrogen bond network forms despite the removal of T302. These results indicate that while T302 may play a role in proton delivery in the formation of the oxenoid-iron complex and in the stabilization of acetylene heme adducts in 2B4, it is not essential for proton delivery given the presence of E301 in the binding site.  相似文献   

10.
The cytochrome P450 (CYP) reaction mechanism often yields a broad array of coupled and uncoupled products from a single substrate. While it is well known that reaction conditions can drastically affect the rate of P450 catalysis, their effects on regioselectivity and coupling are not well characterized. To investigate such effects, the CYP1A2 oxidation of 7-ethoxymethoxy-3-cyanocoumarin (EOMCC) was examined as a function of buffer type, buffer concentration, pH, and temperature. A high-throughput, optical method was developed to simultaneously measure the rate of substrate depletion, NADPH depletion, and generation of the O-dealkylated product. Increasing the phosphate buffer concentration and temperature increased both the NADPH and EOMCC depletion rates by 6-fold, whereas coupling was constant at 7.9% and the regioselectivity of O-dealkylation to other coupled pathways was constant at 21.7%. Varying the buffer type and pH increased NADPH depletion by 2.5-fold and EOMCC depletion by 3.5-fold; however, neither coupling nor regioselectivity was constant, with variations of 14.4% and 21.6%, respectively. Because the enzyme–substrate binding interaction is a primary determinant of both coupling and regioselectivity, it is reasonable to conclude that ionic strength, as varied by the buffer concentration, and temperature alter the rate without affecting binding while buffer type and pH alter both.  相似文献   

11.
The nature of the active site and the substrate specificity of poplar type II peroxiredoxin, an enzyme which preferentially uses glutaredoxin as an electron donor, were investigated in this study. The type II peroxiredoxin is able to use phospholipid hydroperoxide nearly as efficiently as hydrogen peroxide. Two of the hyper-conserved amino acid residues in peroxiredoxins have been altered, by site-directed mutagenesis, generating the mutants T48V and R129Q. The two mutant proteins are inactive with hydrogen peroxide or tertiary butyl hydroperoxide as substrates. On the other hand, the mutant enzymes catalyse the degradation of cumene hydroperoxide with low efficiency. This suggests that the thiol-dependent regeneration process of the catalytic cysteine is not affected by the mutations and that all substrates are not accommodated identically in the active site.  相似文献   

12.
Bietti crystalline corneoretinal dystrophy (BCD, MIM 210370) is a common form of hereditary retinal degeneration in the Chinese population. BCD is caused by CYP4V2 mutations. Understanding the CYP4V2 mutational spectrum and associated phenotypes is of value for clinical practice. In this study, nine CYP4V2 mutations, including four novel ones (c.215-2A>G, c.761A>G, c.958C>T, and c.1169G>A), were detected in all 21 families with BCD. All patients with CYP4V2 mutations had phenotypes typical for BCD. As of now, 34 CYP4V2 mutations have been identified in 104 of 109 families (95.4%), affecting 204 of the 218 alleles (93.6%). Of the 34 mutations, c.802-8_810del17insGC, c.992A>C, and c.1091-2A>G are the most common mutations, accounting for 62.7%, 7.4%, and 6.4% of the 204 mutant alleles, respectively. The remaining 31 mutations were only detected in 1–6 alleles. Mutations in exons 7, 8, and 9 account for 83.3% of mutant alleles (64.7%, 9.3%, and 10.3%, respectively). Our results expand the mutation spectrum of CYP4V2 and demonstrate an overview of the CYP4V2 mutation spectrum and its frequency in families with BCD. BCD is a clinically and genetically homogenous disease.  相似文献   

13.
Bioinformatic analysis and site-directed mutagenesis allowed identification of the determinants of catalysis for CYP74, which are located in the central part of the I-helix and ERR triad. Mutations K302S and T366Y in tomato allene oxide syntase LeAOS3 induced possession of hydroperoxide lyase activity. In contrast to the wild-type MtHPL enzyme that produces C12-aldoacid, mutant forms F284I, F287V, G288I, N285A, and N285T of alfalfa hydroperoxide lyase MtHPL synthesized C13- and C11-fragments. Our data provide evidence that the CYP74 family originated from a common ancestor with hydroperoxide lyase activity.  相似文献   

14.
Lafite P  André F  Zeldin DC  Dansette PM  Mansuy D 《Biochemistry》2007,46(36):10237-10247
The oxidation of six derivatives of terfenadone by recombinant human CYP2J2 (CYP = cytochrome P450) was studied by high-performance liquid chromatography coupled to mass spectrometry (MS) using tandem MS techniques and by 1H NMR spectroscopy. CYP2J2 exhibited a surprising regioselectivity in favor of the hydroxylation of the substrate terminal chain at the weakly reactive homobenzylic position. In contrast, hydroxylation of the same substrates by CYP3A4 mainly occurred on the most chemically reactive sites of the substrates (N-oxidation and benzylic hydroxylation). A 3D homology model of CYP2J2 was constructed using recently published structures of CYP2A6, CYP2B4, CYP2C8, CYP2C9, and CYP2D6 as templates. In contrast with other CYP2 structures, it revealed an active site cavity with a severely restricted access of substrates to the heme through a narrow hydrophobic channel. Dynamic docking of terfenadone derivatives in the CYP2J2 active site allowed one to interpret the unexpected regioselectivity of the hydroxylation of these substrates by CYP2J2, which is mainly based on this restricted access to the iron. The structural features that have been found to be important for recognition of substrates or inhibitors by CYP2J2 were also interpreted on the basis of CYP2J2-substrate interactions in this model.  相似文献   

15.
16.
The functional roles of phenylalanine at position 120 in drug oxidation by cytochrome P450 2D6 (CYP2D6) were examined using a yeast cell expression system and bufuralol (BF) enantiomers as a chiral substrate. Two mutated cDNAs, one encoding a CYP2D6 mutant having alanine instead of Phe-120 (F120A) and another encoding a mutant having alanine instead of Glu-222 (E222A), were prepared by site-directed mutagenesis and transformed into yeast cells via pGYRI vectors. The enantiomeric BF 1'-hydroxylase activities of the mutants were compared with those of the wild type. When enantiomeric BF 1'-hydroxylase activities at a substrate concentration of 100 microM were compared, the CYP2D6 wild type showed substrate enantioselectivity of (R-BF > S-BF) and the F120A mutant exhibited substrate enantioselectivity of (R-BF < or = S-BF), whereas the product diastereoselectivity of (1'R-OH-BF < 1'-S-OH-BF) was similar between the wild type and the mutant. The activities of the other mutant (E222A) were much lower than those of the wild type and the F120A mutant, while its substrate enantioselectivity and product diastereoselectivity were the same as those of the wild type. The kinetics demonstrated that apparent K(m) values were similar among the recombinant enzymes, and V(max) values clearly reflected the selectivity described above. These results indicate that Phe-120 has a key role in the enantioselective BF 1'-hydroxylation by CYP2D6.  相似文献   

17.
Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

18.
The organic hydroperoxides tert-butyl hydroperoxide and cumene hydroperoxide are tumor promoters in the skin of SENCAR mice, and this activity is presumed to be mediated through the activation of the hydroperoxides to free radical species. In this study we have assessed the generation of free radicals from organic hydroperoxides in the target cell (the murine basal keratinocyte) using electron spin resonance. Incubation of primary isolates of keratinocytes from SENCAR mice in the presence of spin traps (5,5-dimethyl-1-pyrroline N-oxide or 2-methyl-2-nitrosopropane) and either tert-butyl hydroperoxide or cumene hydroperoxide resulted in the generation and detection of radical adducts of these spin traps. tert-Butyl alkoxyl and alkyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were detected shortly after addition of tert-butyl hydroperoxide, whereas only alkyl radical adducts were observed with cumene hydroperoxide. Spin trapping of the alkyl radicals with 2-methyl-2-nitrosopropane led to the identification of methyl and ethyl radical adducts following both tert-butyl hydroperoxide and cumene hydroperoxide exposures. Prior heating of the cells to 100 degrees C for 30 min prevented radical formation. The radical generating capacity of subcellular fractions of these epidermal cells was examined using 5,5-dimethyl-1-pyrroline N-oxide and cumene hydroperoxide, and this activity was confined to the 105,000 X g supernatant fraction.  相似文献   

19.
Toxic and pharmacokinetic profiles of drug candidates are evaluated in vivo often using monkeys as experimental animals, and the data obtained are extrapolated to humans. Well understanding physiological properties, including drug-metabolizing enzymes, of monkeys should increase the accuracy of the extrapolation. The present study was performed to compare regio- and stereoselectivity in the oxidation of propranolol (PL), a chiral substrate, by cytochrome P450 2D (CYP2D) enzymes among humans, cynomolgus monkeys and marmosets. Complimentary DNAs encoding human CYP2D6, cynomolgus monkey CYP2D17 and marmoset CYP2D19 were cloned, and their proteins expressed in a yeast cell expression system. The regio- and stereoselective oxidation of PL enantiomers by yeast cell microsomal fractions were compared. In terms of efficiency of expression in the system, the holo-proteins ranked CYP2D6 ≒ CYP2D17 ? CYP2D19. This may be caused by the bulky side chain of the amino acid residue at position 119 (leucine for CYP2D19 vs. valine for CYP2D6 and CYP2D17), which can disturb the incorporation of the heme moiety into the active-site cavity. PL enantiomers were oxidized by all of the enzymes mainly into 4-hydroxyproranolol (4-OH-PL), followed by 5-OH-PL and N-desisopropylpropranolol (NDP). In the kinetic analysis, apparent Km values were commonly in the μM range and substrate enantioselectivity of R-PL < S-PL was observed in both Km and Vmax values for the formation of the three metabolites from PL enantiomers. The activity to produce NDP tended to be higher for the monkey enzymes, particularly CYP2D17, than for the human enzyme. These results indicate that in the oxidation of PL enantiomers by CYP2D enzymes, stereoselectivity is similar but regioselectivity is different between humans and monkeys.  相似文献   

20.
Thr567位点磷酸化是ezrin活化的必需条件。利用定点突变引物将T567突变为A或D,通过PCR扩增出相应的基因片段,将其通过T4连接酶连接至含His标签的原核表达载体pET-20b(+),构建了原核重组质粒pET-20b(+)-Ez WT,pET-20b(+)-EzT567A和pET-20b(+)-EzT567D。转化表达宿主大肠杆菌Rosseta后,用异丙基-β-硫代半乳糖诱导重组蛋白的表达。重组蛋白经亲和镍柱纯化以后,应用western blot鉴定纯化的融合蛋白。Ezrin野生型及其组成型激活和显性负突变质粒的成功构建及其目的蛋白His-Ez WT,His-EzT576A和His-EzT576D的成功表达纯化,为更深入地研究ezrin生物学功能奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号