首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X. Peng  S. M. Mount 《Genetics》1990,126(4):1061-1069
  相似文献   

2.
3.
The apricot allele of the white locus results from the insertion of the retrotransposon copia. Mutations in a newly discovered locus, the Darkener-of-apricot (Doa), suppress wa and some of its revertants. Of 44 other white alleles tested, only wsp55 is affected by Doa, although, in contrast, it is enhanced by Doa mutations. The Doa locus modulates wa and wsp55 expression as a function of its own dosage. Mutations in Doa are dominant suppressors or enhancers and are recessive lethals. Rare Doa mutant homozygotes escaping lethality demonstrate extreme phenotypic suppression of wa and enhancement of wsp55. RNA from wa is substantially wild-type in structure in escapers, although reduced in quantity.  相似文献   

4.
5.
S. M. Mount  M. M. Green    G. M. Rubin 《Genetics》1988,118(2):221-234
The eye color phenotype of white-apricot (wa), a mutant allele of the white locus caused by the insertion of the transposable element copia into a small intron, is suppressed by the extragenic suppressor suppressor-of-white-apricot (su(wa] and enhanced by the extragenic enhancers suppressor-of-forked su(f] and Enhancer-of-white-apricot (E(wa]. Derivatives of wa have been analyzed molecularly and genetically in order to correlate the structure of these derivatives with their response to modifiers. Derivatives in which the copia element is replaced precisely by a solo long terminal repeat (sLTR) were generated in vitro and returned to the germline by P-element mediated transformation; flies carrying this allele within a P transposon show a nearly wild-type phenotype and no response to either su(f) or su(wa). In addition, eleven partial phenotypic revertants of wa were analyzed. Of these, one appears to be a duplication of a large region which includes wa, three are new alleles of su(wa), two are sLTR derivatives whose properties confirm results obtained using transformation, and five are secondary insertions into the copia element within wa. One of these, waR84h, differs from wa by the insertion of the most 3' 83 nucleotides of the I factor. The five insertion derivatives show a variety of phenotypes and modes of interaction with su[f) and su(wa). The eye pigmentation of waR84h is affected by su(f) and E(wa), but not su(wa). These results demonstrate that copia (as opposed to the interruption of white sequences) is essential for the wa phenotype and its response to genetic modifiers, and that there are multiple mechanisms for the alteration of the wa phenotype by modifiers.  相似文献   

6.
7.
8.
9.
Mutations in five loci that modify the phenotype of whiteapricot (wa), caused by the retrotransposon, copia, were examined in two-way combinations to determine whether their effects were additive or epistatic. All two-way combinations of mutations in these five loci, mottler of white (mw), suppressor of forked (su(f], suppressor of white apricot (su(wa], Enhancer of whiteapricot, (E(wa] and Darkener of apricot (Doa), are additive in their effects on wa, implying that each second-site modifier locus affects a different process. Three other copia-induced mutations, HwUa, whd81b25 and ctns were also examined for responsiveness to mutations in these modifier loci. None clearly responded. Mutations associated with B104 insertions, including Gl, vgni, ctn and wric were also examined for responsiveness to mw mutations, which have specificity for this element as well. Both vgni and wric respond to mutations in mw. The former interaction demonstrates that mw is capable of interacting with B104 elements in loci other than white. The significance of the results with respect to the nature of second-site modifier loci is discussed.  相似文献   

10.
Somatic cell mutation frequency in vivo was measured in individuals with high cancer risk who were from ataxia telangiectasia (A-T) families. The assay for somatic mutation measures the frequency of variant erythrocytes which are progeny of erythroid precursor cells with mutations that result in a loss of gene expression at the polymorphic glycophorin A (GPA) locus. Samples from 14 of 15 A-T homozygotes showed high frequencies of GPA gene expression-loss variant cells with normal expression of only one of the two alleles at the GPA locus (i.e., GPA hemizygous variant cells). The mean elevation of the frequency of hemizygous variant cells over those in normal controls and unaffected family members was 7-14-fold. A-T homozygotes also showed an increase in the frequency of cells in which one allele at the GPA locus had lost expression and in which the remaining allele was expressed at a homozygous level (i.e., GPA homozygous variant cells). Family members who are obligate A-T heterozygotes did not appear to have a significantly elevated frequency of GPA hemizygous or homozygous variant cells. These indications of elevated in vivo frequencies of variant erythrocytes in A-T homozygotes support a causal link between susceptibility to somatic mutation and susceptibility to cancer.  相似文献   

11.
12.
The enhancer of split locus and neurogenesis in Drosophila melanogaster   总被引:11,自引:0,他引:11  
Enhancer of split (E(spl)) is one of a group of so-called neurogenic genes of Drosophila. We describe two different types of E(spl) alleles, dominant and recessive, which exert opposite effects on both central and peripheral nervous system development. The only extant dominant allele determines a reduction in the number of central neurons and peripheral sensilla; this phenotype is not reduced by a normal complement of wild-type alleles. Since animals carrying a triploidy for the wild-type locus develop similar defects, the dominant allele is probably the result of a gain-of-function mutation. Several recessive alleles, obtained as revertants of the dominant allele, are loss-of-function mutations and determine considerable neural hyperplasia. The present evidence suggests that neural defects of E(spl) mutants are due to defective segregation of neural and epidermal lineages, leading to neural commitment of less or of more cells than in the wild type, depending upon whether the animals carry the dominant or any of the recessive alleles, respectively. Therefore, E(spl) formally behaves as a gene switching between neural and epidermal pathways.  相似文献   

13.
Zabala G  Vodkin L 《Genetics》2003,163(1):295-309
Three loci (I, R, and T) control pigmentation of the seed coats in Glycine max and are genetically distinct from those controlling flower color. The T locus also controls color of the trichome hairs. We report the identification and isolation of a flavonoid 3' hydroxylase gene from G. max (GmF3'H) and the linkage of this gene to the T locus. This GmF3'H gene was highly expressed in early stages of seed coat development and was expressed at very low levels or not at all in other tissues. Evidence that the GmF3'H gene is linked to the T locus came from the occurrence of multiple RFLPs in lines with varying alleles of the T locus, as well as in a population of plants segregating at that locus. GmF3'H genomic and cDNA sequence analysis of color mutant lines with varying t alleles revealed a frameshift mutation in one of the alleles. In another line derived from a mutable genetic stock, the abundance of the mRNAs for GmF3'H was dramatically reduced. Isolation of the GmF3'H gene and its identification as the T locus will enable investigation of the pleiotropic effects of the T locus on cell wall integrity and its involvement in the regulation of the multiple branches of the flavonoid pathway in soybean.  相似文献   

14.
The Komeda diabetes-prone (KDP) rat is a spontaneous animal model of human autoimmune type 1 diabetes. By positional cloning of the non-MHC major susceptibility locus lddm/kdp1, we recently identified a nonsense mutation in Cblb and also found that lymphocytes of KDP rats infiltrate into various tissues, indicating autoimmunity. The maintenance and production of KDP rats has been a critical problem owing to the poor reproductive ability of diabetic animals. To solve the problem, we here established the KDP rat as a segregating inbred strain. We first identified animals that were heterozygous at the lddm/kdp1 region in a breeding colony of KDP rats. The heterozygous region spans at least from D11Yok1 to Cblb on rat chromosome 11. By mating between the heterozygous rats, we obtained homozygotes, heterozygotes and wild-types with the expected ratio of 1:2:1 and found that only the homozygotes developed diabetes, suggesting that these genotypes represent those of lddm/kdp1. We then tried to maintain KDP rats by mating between the heterozygotes, which resulted in a segregating inbred strain. Within 210 d of age, about 80% of lddm/kdp1 homozygotes developed diabetes with severe insulitis, while neither heterozygotes nor wild-types developed diabetes. The phenotypic characteristics of the homozygotes are the same as those of progeny of diabetic parents in the original KDP rats. The segregating inbred KDP rat strain described here would serve as a useful animal model for autoimmune diseases, including type 1 diabetes.  相似文献   

15.
D. H. Baird  A. P. Schalet    R. J. Wyman 《Genetics》1990,126(4):1045-1059
Drosophila melanogaster bearing the Passover mutation fail to jump in response to a light-off stimulus. Pas also disrupts some of the synapses between the neurons of the giant fiber system which mediate this escape behavior. We have mapped Pas to the 19E subdivision of the polytene X chromosome. Our genetic analyses reveal that deletions of either of two nonoverlapping regions fail to fully complement Pas. Heterozygotes of Pas with chromosomal deletions in the vicinity of polytene band 19E3 exhibit the full set of neuronal defects shown by Pas homozygotes. Alleles of the R-9-29 complementation group, which maps to band 19E3, exhibit a complex pattern of complementation with Pas. Heterozygotes combining the lethal R-9-29 alleles with Pas are all viable, some complement the neuronal defects of Pas, but most exhibit these defects. The viable shaking-B2 mutation also fails to complement Pas, the R-9-29 alleles or the 19E3 deficiencies. The R-9-29 locus may contain two functional domains, one required for viability the other for normal neuronal phenotype, trans-Heterozygotes bearing mutant alleles or a deficiency of the first region (19E3) together with deficiencies of the second region (19E5-6) also exhibit some of the neuronal defects shown by the Passover mutant. Deficiencies which delete the entire 19E3 to 19E6 interval do not produce this phenotype when heterozygous with a normal X chromosome. Thus normal function requires a cis-interaction between the two regions. These findings raise the possibility that the gene mutated by Pas is split or separated from a cis-activator by at least one other gene.  相似文献   

16.
New alleles of brachyury (Tkt1, Tkt4) were induced in the mouse complete tw5 haplotype by ethylnitrosourea (ENU). Like the original brachyury (T) mutation, the new alleles cause a short-tailed phenotype in heterozygotes, and interact with the t complex tail interaction factor (tct) in trans to cause phenotypically tailless mice. Because ENU is mainly a point mutagen, it is important to determine that the new alleles are homozygous embryonic lethal mutations like the original T allele, and to characterize their embryonic lethal phenotype. Moreover, the Tkt1 mutation maps to an inverted position relative to quaking (qk) in t haplotypes as compared with its position on normal chromosome 17. The Tkt1 allele was separated from the resident tw5 lethal gene, tclw5, by recombination, allowing embryology studies to be performed. Embryological analyses show that the Tkt1 allele is nearly identical to the classic T allele. At 9 and 10 days of development, homozygous Tkt1/Tkt1 embryos are grossly abnormal with properties including 1) irregular, disorganized somite pairs, 2) a shortened posterior end of the embryo, 3) an irregular neural tube, and 4) an abnormal notochord. In addition, 10 day-old abnormal embryos have anterior limb buds that point dorsally rather than ventrally, and are smaller than normal littermates. We conclude that the Tkt1 mutation is a valuable allele for both mapping and molecular characterization of the brachyury locus.  相似文献   

17.
18.
P M Bingham  B H Judd 《Cell》1981,25(3):705-711
Results are described demonstrating that several X chromosomes of Drosophila melanogaster carrying the Wa (white-apricot) mutant allele also carry homology to the copia transposable element in distal 3C of the polytene chromosome map as assessed by situ hybridization. The locus of the Wa mutation, white, resides in distal 3C. We further show, using fine scale genetic mapping techniques, that the copia homology in distal 3C in Wa-bearing chromosomes is very tightly linked to the Wa mutation. Both the Wa mutation and the copia homology associated with it map to the central portion of the white locus.  相似文献   

19.
20.
M Carlson  D Brutlag 《Cell》1978,15(3):733-742
A method for purifying sequences adjacent to satellite DNA in the heterochromatin of D. melanogaster is described. A cloned DNA segment containing part of a copia gene adjacent to 1.688 g/cm3 satellite DNA has been isolated. The copia genes compose a repeated gene family which codes for abundant cytoplasmic poly(a)-containing RNA (Young and Hogness, 1977; Finnegan et al., 1978). We have identified two major poly (A)-containing RNA species [5.2 and 2.1 kilobases (kb)] produced by the copia gene family. The cloned segment contains copia sequences homologous to the 5' end of RNA within 0.65 kb of the 1.688 satellite DNA sequences. Seven different cloned copia genes from elsewhere in the genome have also been isolated, and a 5.2 kb region present in five of the clones was identified as copia by heteroduplex analysis. In addition, three ususual copies of copia were found: a "partial" copy of the gene (3.7 kb) which has one endpoint in common with the 5.2 kb unit; a copia gene flanked on one side by a 1.6 kb sequence and on the other by the same 1.6 kb sequence in the inverted orientation; and a copia gene flanked only on one side by the same sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号