首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic surface of the BR (initial) state of bacteriorhodopsin is characterized by a cluster of three carboxylates that function as a proton-collecting antenna. Systematic replacement of most of the surface carboxylates indicated that the cluster is made of D104, E161, and E234 (Checover, S., Y. Marantz, E. Nachliel, M. Gutman, M. Pfeiffer, J. Tittor, D. Oesterhelt, and N. Dencher. 2001. Biochemistry. 40:4281-4292), yet the BR state is a resting configuration; thus, its proton-collecting antenna can only indicate the presence of its role in the photo-intermediates where the protein is re-protonated by protons coming from the cytoplasmic matrix. In the present study we used the D96N and the triple (D96G/F171C/F219L) mutant for monitoring the proton-collecting properties of the protein in its late M state. The protein was maintained in a steady M state by continuous illumination and subjected to reversible pulse protonation caused by repeated excitation of pyranine present in the reaction mixture. The re-protonation dynamics of the pyranine anion was subjected to kinetic analysis, and the rate constants of the reaction of free protons with the surface groups and the proton exchange reactions between them were calculated. The reconstruction of the experimental signal indicated that the late M state of bacteriorhodopsin exhibits an efficient mechanism of proton delivery to the unoccupied-most basic-residue on its cytoplasmic surface (D38), which exceeds that of the BR configuration of the protein. The kinetic analysis was carried out in conjunction with the published structure of the M state (Sass, H., G. Büldt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, and P. Ormos. 2000. Nature. 406:649-653), the model that resolves most of the cytoplasmic surface. The combination of the kinetic analysis and the structural information led to identification of two proton-conducting tracks on the protein's surface that are funneling protons to D38. One track is made of the carboxylate moieties of residues D36 and E237, while the other is made of D102 and E232. In the late M state the carboxylates of both tracks are closer to D38 than in the BR (initial) state, accounting for a more efficient proton equilibration between the bulk and the protein's proton entrance channel. The triple mutant resembles in the kinetic properties of its proton conducting surface more the BR-M state than the initial state confirming structural similarities with the BR-M state and differences to the BR initial state.  相似文献   

2.
Proton-transfer reactions on the surface of bovine heart cytochrome c oxidase were investigated by combining a laser-induced proton-pulse technique with molecular modeling. The experimental approach simultaneously monitors the state of pyranine protonation in the bulk phase and that of a fluorescein indicator specifically attached to the native Cys(III-115) residue of subunit III of cytochrome oxidase. The reversible dynamics of the acid-base equilibration between the surface and the bulk phase were measured with submicrosecond time resolution and analyzed by numerical integration of coupled nonlinear differential rate equations. Kinetic analysis shows that carboxylates on the surface of the protein act as a proton-collecting antenna, which is able to rapidly transfer protons to nearby histidines that function as a local proton reservoir. These properties enable cytochrome oxidase to carry out its redox-linked proton translocation. Molecular modeling of the fluorescein-binding site indicates that, in addition to the covalent bond, the dye is anchored through a hydrogen bond to the hydroxyl moiety of Tyr(VII-50). The protonation of the dye is mediated through three residues that shuttle protons between the bulk and the dye. A correlation between the measured kinetic properties of the bound fluorescein and the different configurations of the dye allows us to predict the identity of the proton-binding sites in the fluorescein-binding domain.  相似文献   

3.
Biological membranes contain proton-binding moieties. A laser-induced proton pulse was used to characterize the proton-binding properties of bacterioopsin-containing membranes and of sarcoplasmic reticulum. Different protonation and deprotonation processes occurred. The liberation of protons from pyranine dye and the protonation of the membranes were independent of temperature; the reprotonation of pyranine and proton release from the membranes were temperature dependent. In the cases of membrane-free and membrane-containing systems, the activation enthalpies and entropies were calculated from the decay rates. The activation enthalpy of 16 kJ/mol for reprotonation of pyranine in membrane-free solution is characteristic for a diffusion-controlled process. The value for the membrane-containing systems was nearly double, suggesting that the buffering moieties of the membrane surfaces strongly bind the protons, raising the activation enthalpies. This is possibly an effect of the Coulomb cages formed from closely located proton acceptor sites. The activation entropies were positive in all cases.  相似文献   

4.
The reaction mechanism and the dynamic aspects of protonation of a defined moiety located inside an aqueous cavity in a protein were monitored by time resolved spectroscopy using the pyranine apomyoglobin complex as a model (Shimoni, Tsfadia, Nachliel, and Gutman, 1993, Biophys. J. 64:472-479). The reaction was synchronized by a short laser pulse and the reprotonation of the ground state pyranine anion (phi O-) was monitored, in the microsecond time scale, by its transient absorption at 457 nm. The observed signal was reconstructed by a numeric solution of nonlinear, coupled differential equations which account for the direct reaction of phi O- with bulk proton and by proton transfer from the nearby amino acids: His 64, Asp 44, Asp 60, and Glu 59. A unique combination of rate constant was obtained which quantitates the contribution of each pathway to the overall relaxation process. In the first phase of the dynamics phi O- abstracts a proton from the nearby protonated histidine. The bulk proton interacts preferentially with the cluster of three carboxylates and immediately shuttled to the deprotonated histidine. The high proximity of the reactive groups and the strong electrostatic forces operating inside the heme binding cavity render the rate of proton transfer in the site ultrafast.  相似文献   

5.
Proton transfer reactions on surfaces are prevalent in biology, chemistry and physics. In the present study, we employed classical Molecular Dynamics simulations to search for the presence of transient configurations that enable proton transfer, or proton sharing, between adjacent carboxylate groups on the protein surface. The results demonstrate that, during random fluctuations of the residues on the surface, there are repeated situations in which nearby carboxylates either share a common proton through a hydrogen bond, or are connected by a few water molecules that form conducting networks. These networks do not extend out of the common Coulomb cage of the participating residues and the lifetimes of the bridged structures are sufficiently long to allow passage of a proton between the carboxylates. The detection of domains capable of supporting a rapid proton transfer on a protein supports the notion that clusters of carboxylates are the operative elements of proton collecting antennae, as in bacteriorhodopsin, cytochrome c oxidase or the photosynthetic reaction center.  相似文献   

6.
Proteins that bind protons at cell membrane interfaces often expose to the bulk clusters of carboxylate and histidine sidechains that capture protons transiently and, in proton transporters, deliver protons to an internal site. The protonation-coupled dynamics of bulk-exposed carboxylate clusters, also known as proton antennas, is poorly described. An essential open question is how water-mediated bridges between sidechains of the cluster respond to protonation change and facilitate transient proton storage. To address this question, here I studied the protonation-coupled dynamics at the proton-binding antenna of PsbO, a small extrinsinc subunit of the photosystem II complex, with atomistic molecular dynamics simulations and systematic graph-based analyses of dynamic protein and protein-water hydrogen-bond networks. The protonation of specific carboxylate groups is found to impact the dynamics of their local protein-water hydrogen-bond clusters. Regardless of the protonation state considered for PsbO, carboxylate pairs that can sample direct hydrogen bonding, or bridge via short hydrogen-bonded water chains, anchor to nearby basic or polar protein sidechains. As a result, carboxylic sidechains of the hypothesized antenna cluster are part of dynamic hydrogen bond networks that may rearrange rapidly when the protonation changes.  相似文献   

7.
大肠杆菌半胱氨酸脱硫酶(cysteine desulfurase,IscS)是一类依赖磷酸吡哆醛(pyridoxal phosphate,PLP)的同质二聚体的酶.IscS能催化游离底物L-半胱氨酸脱硫,生成L-丙氨酸和单质硫.在此催化过程中,可形成与酶结合的半胱氨酸过硫化物中间物,并出现了7种具有不同特征性吸收峰的中间反应物.为了研究PLP的结合及中间反应物的形成及累积,对IscS中与PLP结合相关,及IscS半胱氨酸活性口袋中特定氨基酸残基位点(His104,Glu156,Asp180,Gln183和Lys206)进行定点突变,结果发现:1)IscS突变体H104Q、D180G、Q183E、K206A对PLP的结合能力具有不同程度的减弱,酶的活性明显降低甚至消失,PLP与蛋白结合的特异吸收峰消失,或发生明显偏移并出现新的吸收峰,且这些新出现的吸收峰又与蛋白形成的各种中间反应物的吸收峰一致|2)IscS突变体E156Q的活性增高,PLP与蛋白结合的吸收峰明显增加.这些结果都表明,IscS氨基酸残基可通过影响PLP的结合及质子转移引起催化过程中不同中间反应物的形成及累积,同时提高或降低蛋白的活性.  相似文献   

8.
In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame products of unknown function, we have determined the structure of YadB at 1.5A using molecular replacement. The YadB protein is 298 amino acid residues long and displays 34% sequence identity with E.coli glutamyl-tRNA synthetase (GluRS). It is much shorter than GluRS, which contains 468 residues, and lacks the complete domain interacting with the tRNA anticodon loop. As E.coli GluRS, YadB possesses a Zn2+ located in the putative tRNA acceptor stem-binding domain. The YadB cluster uses cysteine residues as the first three zinc ligands, but has a weaker tyrosine ligand at the fourth position. It shares with canonical amino acid RNA synthetases a major functional feature, namely activation of the amino acid (here glutamate). It differs, however, from GluRSs by the fact that the activation step is tRNA-independent and that it does not catalyze attachment of the activated glutamate to E.coli tRNAGlu, but to another, as yet unknown tRNA. These results suggest thus a novel function, distinct from that of GluRSs, for the yadB gene family.  相似文献   

9.
S-nitrosylation, or the replacement of the hydrogen atom in the thiol group of cysteine residues by a -NO moiety, is a physiologically important posttranslational modification. In our previous work we have shown that S-nitrosylation is involved in the disruption of the endothelial nitric oxide synthase (eNOS) dimer and that this involves the disruption of the zinc (Zn) tetrathiolate cluster due to the S-nitrosylation of Cysteine 98. However, human eNOS contains 28 other cysteine residues whose potential to undergo S-nitrosylation has not been determined. Thus, the goal of this study was to identify the cysteine residues within eNOS that are susceptible to S-nitrosylation in vitro. To accomplish this, we utilized a modified biotin switch assay. Our modification included the tryptic digestion of the S-nitrosylated eNOS protein to allow the isolation of S-nitrosylated peptides for further identification by mass spectrometry. Our data indicate that multiple cysteine residues are capable of undergoing S-nitrosylation in the presence of an excess of a nitrosylating agent. All these cysteine residues identified were found to be located on the surface of the protein according to the available X-ray structure of the oxygenase domain of eNOS. Among those identified were Cys 93 and 98, the residues involved in the formation of the eNOS dimer through a Zn tetrathiolate cluster. In addition, cysteine residues within the reductase domain were identified as undergoing S-nitrosylation. We identified cysteines 660, 801, and 1113 as capable of undergoing S-nitrosylation. These cysteines are located within regions known to bind flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide (NADPH) although from our studies their functional significance is unclear. Finally we identified cysteines 852, 975/990, and 1047/1049 as being susceptible to S-nitrosylation. These cysteines are located in regions of eNOS that have not been implicated in any known biochemical functions and the significance of their S-nitrosylation is not clear from this study. Thus, our data indicate that the eNOS protein can be S-nitrosylated at multiple sites other than within the Zn tetrathiolate cluster, suggesting that S-nitrosylation may regulate eNOS function in ways other than simply by inducing dimer collapse.  相似文献   

10.
The dynamics of proton transfer between the surface of purple membrane and the aqueous bulk have recently been investigated by the Laser Induced Proton Pulse Method. Following a Delta-function release of protons to the bulk, the system was seen to regain its state of equilibrium within a few hundreds of microseconds. These measurements set the time frame for the relaxation of any state of acid-base disequilibrium between the bacteriorhodopsin's surface and the bulk. It was also deduced that the released protons react with the various proton binding within less than 10 micro s. In the present study, we monitored the photocycle and the proton-cycle of photo-excited bacteriorhodopsin, in the absence of added buffer, and calculated the proton balance between the Schiff base and the bulk phase in a time-resolved mode. It was noticed that the late phase of the M decay (beyond 1 ms) is characterized by a slow (subsecond) relaxation of disequilibrium, where the Schiff base is already reprotonated but the pyranine still retains protons. Thus, it appears that the protonation of D96 is a slow rate-limiting process that generates a "proton hole" in the cytoplasmic section of the protein. The velocity of the hole propagation is modulated by the ionic strength of the solution and by selective replacements of charged residues on the interhelical loops of the protein, at domains that seems to be remote from the intraprotein proton conduction trajectory.  相似文献   

11.
Rotavirus infection of MA104 cells has been shown to be inhibited by cell membrane-impermeant thiol/disulfide exchange inhibitors and anti-PDI antibodies. To characterise the amino acid sequences of rotavirus structural proteins potentially mediating cell surface PDI?Csubstrate interactions, rotavirus-derived peptides from VP4 and VP7 (RRV) and VP7 (Wa), and their modified versions containing serine instead of cysteine were synthesized. Cysteine-containing VP7 peptides corresponding to residues 189?C210 or 243?C263 caused an infectivity inhibitory effect of about 64 and 85?%, respectively, when added to cells. Changing cysteine to serine significantly decreased the inhibitory effect. A cysteine-containing peptide corresponding to VP4 residues 200?C219 and its scrambled version reduced infectivity by 92 and 80?%, respectively. A cysteine to serine change in the original VP4 200?C219 peptide did not affect its inhibitory effect. Non-rotavirus related sequences containing cysteine residues efficiently inhibited rotavirus infectivity. Antibodies against VP7 residues 189?C210 or 243?C263 significantly inhibited rotavirus infectivity only after virus attachment to cells had occurred, whereas those against VP4 200?C219 peptide inhibited infectivity irrespective of whether virus or cell-attached virus was antibody-treated. A direct PDI?Cpeptide interaction was shown by ELISA for cysteine-containing VP7 and VP4 peptides. Virus?Ccell attachment was unaffected by the peptides inhibiting virus infectivity. The results showed that even though cysteine residues in the peptides tested are important in both virus infectivity inhibition and in vitro PDI?Cpeptide interaction, the accompanying amino acid sequence also plays some role. As a whole, our findings further support our hypothesis that cell surface PDI from MA104 cells might be contributing to rotavirus entry at a post-attachment step.  相似文献   

12.
Based on new Rhodopseudomonas (Rp.) viridis reaction center (RC) coordinates with a reliable structure of the secondary acceptor quinone (QB) site, a continuum dielectric model and finite difference technique have been used to identify clusters of electrostatically interacting ionizable residues. Twenty-three residues within a distance of 25 A from QB (QB cluster) have been shown to be strongly electrostatically coupled to QB, either directly or indirectly. An analogous cluster of 24 residues is found to interact with QA (QA cluster). Both clusters extend to the cytoplasmic surface in at least two directions. However, the QB cluster differs from the QA cluster in that it has a surplus of acidic residues, more strong electrostatic interactions, is less solvated, and experiences a strong positive electrostatic field arising from the polypeptide backbone. Consequently, upon reduction of QA or QB, it is the QB cluster, and not the QA cluster, which is responsible for substoichiometric proton uptake at neutral pH. The bulk of the changes in the QB cluster are calculated to be due to the protonation of a tightly coupled cluster of the three Glu residues (L212, H177, and M234) within the QB cluster. If the lifetime of the doubly reduced state QB2- is long enough, Asp M43 and Ser L223 are predicted to also become protonated. The calculated complex titration behavior of the strongly interacting residues of the QB cluster and the resulting electrostatic response to electron transfer may be a common feature in proton-transferring membrane protein complexes.  相似文献   

13.
The mechanism of proton pumping by P-type H(+)-ATPases is still unclear. In the plant P-type plasma membrane H(+)-ATPase AHA2, two charged residues, Arg(655) and Asp(684), are conserved in transmembrane segments M5 and M6, respectively, a region that has been shown be contribute to ion coordination in related P-type ATPases. Substitution of Arg(655) with either alanine or aspartate resulted in mutant enzymes exhibiting a significant shift in the P-type ATPase E(1)P-E(2)P conformational equilibrium. The mutant proteins accumulated in the E(1)P conformation, but were capable of conducting proton transport. This points to an important role of Arg(655) in the E(1)P-E(2)P conformational transition. The presence of a carboxylate moiety at position Asp(684) proved essential for coupling between initial proton binding and proton pumping. The finding that the carboxylate side chain of Asp(684) contributes to the proton-binding site and appears to function as an absolutely essential proton acceptor along the proton transport pathway is discussed in the context of a possible proton pumping mechanism of P-type H(+)-ATPases.  相似文献   

14.
Pi J  Chow H  Pittard AJ 《Journal of bacteriology》2002,184(21):5842-5847
Site-directed mutagenesis was used to investigate a region of the PheP protein corresponding to the postulated consensus amphipathic region (CAR) in the GabP protein. Whereas some critical residues are conserved in both proteins, there are major differences between the two proteins which may reflect different functions for this region. Replacement of R317, Y313, or P341 by a number of other amino acids destroyed the PheP function. An R317E-E234R double mutant exhibited low levels of PheP transport activity, indicating that there is a possible interaction between these two residues in the wild-type protein. E234 is highly conserved in members of the superfamily of amino acid-polyamine-organocation transporters and also is critical for PheP function in the wild-type protein. Second-site suppressors were isolated for mutants with mutations in E234, Y313, R317, and P341. Most suppressor mutations were found to cluster towards the extracellular face of spans III, IX, and X. Some mutations, such as changes at M116, were able to suppress each of the primary changes at positions E234, Y313, R317, and P341 but were unable to restore function to a number of other primary mutants. The possible implications of these results for the tertiary structure of the protein are discussed.  相似文献   

15.
J Heberle  N A Dencher 《FEBS letters》1990,277(1-2):277-280
The photocycle and the proton pumping kinetics of bacteriorhodopsin, as well as the transfer rate of protons from the membrane surface into the aqueous bulk phase were examined for purple membranes in water and ice. In water, the optical pH indicator pyranine residing in the aqueous bulk phase monitors the H(+)-release later than the pH indicator fluorescein covalently linked to the extracellular surface of BR. In the frozen state, however, pyranine responds to the ejected H+ as fast as fluorescein attached to BR, demonstrating that the surface/bulk transfer is in ice no longer rate limiting. The pumped H+ appears at the extracellular surface during the transition of the photocycle intermediate L550 to the intermediate M412. The Arrhenius plot of the M formation rate suggests that the proton is translocated through the protein via an ice-like structure.  相似文献   

16.
Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. 1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. 2) As also reported previously (Hackett, N. R., Stern, L. J., Chao, B. H., Kronis, K. A., and Khorana, H. G. (1987) J. Biol. Chem. 262, 9277-9284), substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. 3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.  相似文献   

17.
The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the non-catalytic beta-subunit. Correct assembly between the alpha- and beta-subunits is essential for the functional expression of H(+),K(+)-ATPase. The beta-subunit contains nine conserved cysteine residues; two are in the cytoplasmic domain, one in the transmembrane domain, and six in the ectodomain. The six cysteine residues in the ectodomain form three disulfide bonds. In this study, we replaced each of the cysteine residues of the beta-subunit with serine individually and in several combinations. The mutant beta-subunits were co-expressed with the alpha-subunit in human embryonic kidney 293 cells, and the role of each cysteine residue or disulfide bond in the alpha/beta assembly, stability, and cell surface delivery of the alpha- and beta-subunits and H(+),K(+)-ATPase activity was studied. Mutant beta-subunits with a replacement of the cytoplasmic and transmembrane cysteines preserved H(+),K(+)-ATPase activity. All the mutant beta-subunits with replacement(s) of the extracellular cysteines did not assemble with the alpha-subunit, resulting in loss of H(+),K(+)-ATPase activity. These mutants did not permit delivery of the alpha-subunit to the cell surface. Therefore, each of these disulfide bonds of the beta-subunit is essential for assembly with the alpha-subunit and expression of H(+),K(+)-ATPase activity as well as for cell surface delivery of the alpha-subunit.  相似文献   

18.
We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities.  相似文献   

19.
We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities.  相似文献   

20.
The Escherichia coli DNA repair enzyme MutY plays an important role in the recognition and repair of 7, 8-dihydro-8-oxo-2'-deoxyguanosine:2'-deoxyadenosine (OG:A) mismatches in DNA [Michaels et al. (1992) Proc. Natl. Acad. Sci. U.S. A. 89, 7022-7025]. MutY prevents DNA mutations resulting from the misincorporation of A opposite OG by using N-glycosylase activity to remove the adenine base. An interesting feature of MutY is that it contains a [4Fe-4S]2+ cluster that has been shown to play an important role in substrate recognition [Porello, S. L., Cannon, M. J., David, S. S. (1998) Biochemistry 37, 6465-6475]. Herein, we have used site-directed mutagenesis to individually replace the cysteine ligands to the [4Fe-4S]2+ cluster of E. coli MutY with serine, histidine, and alanine. The extent to which the various mutations reduce the levels of protein overexpression suggests that coordination of the [4Fe-4S]2+ cluster provides stability to MutY in vivo. The ability of the mutated enzymes to bind to a substrate analogue DNA duplex and their in vivo activity were evaluated. Remarkably, the effects are both substitution and position dependent. For example, replacement of cysteine 199 with histidine provides a mutated enzyme that is expressed at high levels and exhibits DNA binding and in vivo activity similar to the WT enzyme. These results suggest that histidine coordination to the iron-sulfur cluster may be accommodated at this position in MutY. In contrast, replacement of cysteine 192 with histidine results in less efficient DNA binding and in vivo activity compared to the WT enzyme without affecting levels of overexpression. The results from the site-directed mutagenesis suggest that the structural properties of the iron-sulfur cluster coordination domain are important for both substrate DNA recognition and the in vivo activity of MutY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号