首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven haploid strains (four with the MAT alpha mating type and three with the MATa mating type) were selected from the Peterhof genetic collection of yeast. Previous phenotypic analysis assigned six of these strains to a physiological group of strains with a lower activity of the Ras/cAMP signal transduction pathway. The haploids were crossed, and the resulting 12 diploids showed higher glycogen accumulation, tolerance to heat shock and nitrogen starvation, and sporulation in complete media. Ten of the diploids expressed the hypersporulation phenotype (higher sporulation efficiency). The phenotypic characters of these ten diploids suggested a reduced activity of the Ras/cAMP pathway. All 12 diploids were tested for sporulation and production of two groups of asci (those with one or two spores and those with three or four spores) as dependent on culture conditions (21, 30, or 34 degrees C; standard sporulation medium or a complete medium containing potassium acetate or glycerol in place of glucose). Sporulation proved to depend on temperature and medium composition. The results are collated with the data on yeast phenotypes associated with a lower activity of the Ras/cAMP signal transduction pathway.  相似文献   

2.
High mutant frequencies indicated that the wild-type strains of Pichia stipitis are haploid. Sporulation ability of these clones pointed to a homothallic life cycle. Mating was induced by cultivation under nutritionally poor conditions on malt extract medium. Conjugation was followed immediately by sporulation. However, hybrids could be rescued by transferring the nascent zygotes to complete medium before meiosis had started. Under rich nutritional conditions, hybrids were mitotically stable and did not sporulate. The segregation pattern of auxotrophic markers of diploid zygotes indicated regular meiosis, although asci contained preferentially spore dyads. Received: 29 February 1996 / Accepted: 29 March 1996  相似文献   

3.
A general method to convert homothallic strains of the yeast Saccharomyces cerevisiae to heterothallism is described which is applicable to genetically well-behaved diploids, as well as to strains that sporulate poorly or produce few viable and mating-competent spores. The heterothallic (ho) allele was introduced into three widely used wine strains through spore × cell hybridization. The resultant hybrids were sporulated, and heterothallic segregants were isolated for use in successive backcrosses. Heterothallic progeny of opposite mating type and monosomic for chromosome III produced by sixth-backcross hybrids or their progeny were mated together to reconstruct heterothallic derivatives of the wine strain parents. A helpful prerequisite to the introduction of ho was genetic purification of the parental strains based on repeated cycles of sporulation, ascus dissection, and clonal selection. A positive selection to isolate laboratory-wine strain hybrids requiring no prior genetic alteration of the industrial strains, coupled with a partial selection to reduce the number of spore progeny needed to be screened to isolate heterothallic segregants of the proper genotype made the procedure valuable for genetically intractable strains. Trial grape juice fermentations indicated that introduction of ho had no deleterious effect on fermentation behavior.  相似文献   

4.
Summary Kinetic experiments with synchronously sporulating cultures of a homothallic h90 strain of Schizosaccharomyces pombe showed that trehalase activity abruptly increased in the late sporulation process, coinciding with the appearance of visible spores. Trehalase activity was absent in vegetative cells. A set of strains different in genetic constitution at the mating type loci was tested for induction of trehalase on nitrogen-free sporulation medium. The appearance of trehalase activity on the sporulation medium was observed only in sporulating cultures; cultures of homothallic strains (h90) and diploid strains heterozygous for mating type (h+/h), and mixed cultures of heterothallic h+ and h strains. Trehalase activity was not induced in nonsporogenic strains: heterothallic haploid strains (h+ and h), diploid strains homozygous for mating type (h+/h+ and h/h) and the homothallic strain harboring the mutation in the mat2 gene, which was unable to undergo the first meiotic division. Trehalose accumulation on the sporulation medium was observed solely in the sporulating cultures. These results led us to conclude that the induction of trehalase activity as well as the accumulation of trehalose in the medium lacking nitrogen sources was a sporulation-specific event under the control of the mating type genes.  相似文献   

5.
Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media.  相似文献   

6.
Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MAT a allele, designated mata-2, and MAT alpha ho strains show a high capacity for mating with MATa strains. The MAT alpha/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MAT alpha homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MAT alpha/MATa):two haploid segregants. Therefore, MAT switches occur in MAT alpha/mata-2 HO/ho cells to produce MAT alpha/Mata cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MAT alpha and subsequently to a functional MATa. Among 32 MAT alpha to MATa switches tested, where the MAT alpha was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, complements the matalpha ste1-5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the Mat alpha locus. No mata-2 was recovered by HO-mediated switching of MAT alpha (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MAT alpha and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (HICKS, STRATHERN and HERSKOWITZ )977b) proposed to explain MAT interconversions.  相似文献   

7.
Seven haploid strains (four with the MAT mating type and three with the MATa mating type) were selected from the Peterhof genetic collection of yeast. Previous phenotypic analysis assigned six of these strains to a physiological group of strains with changed activity of the Ras/cAMP signal transduction pathway. The haploids were crossed, and the resulting 12 diploids showed higher glycogen accumulation, tolerance to heat shock and nitrogen starvation, and sporulation in complete media. Ten of the diploids expressed the hypersporulation phenotype (higher sporulation efficiency). The phenotypic characters of these ten diploids suggested a reduced activity of the Ras/cAMP pathway. All 12 diploids were tested for sporulation and production of two groups of asci (those with one or two spores and those with three or four spores) as dependent on culture conditions (21, 30, or 34°C; standard sporulation medium or a complete medium containing potassium acetate or glycerol in place of glucose). Sporulation proved to depend on temperature and medium composition. The results are collated with the data on yeast phenotypes associated with a lower activity of the Ras/cAMP signal transduction pathway.  相似文献   

8.
The Genetic System Controlling Homothallism in Saccharomyces Yeasts   总被引:21,自引:7,他引:14       下载免费PDF全文
There are four types of life cycles in Saccharomyces cerevisiae and its related species. A perfect homothallic life cycle (the Ho type) is observed in the classic D strain. Two other types show semi-homothallism; one of them shows a 2-homothallic diploid:2alpha heterothallic haploid segregation (the Hp type) and another, a 2-homothallic:2a segregation (the Hq type). In the segregants from these Ho, Hp, and Hq diploids, each homothallic segregant shows the same segregation pattern as its parental diploid. The fourth type has a heterothallic life cycle showing a 2a:2alpha segregation and the diploids are produced by the fusion of two haploid cells of opposite mating types. The diploids prepared by the crosses of alpha Hp (an alpha haploid segregant from the Hp diploid) to a Hq (an a haploid from the Hq diploid) segregated two types (Type I and II) of the Ho type homothallic clone among their meiotic segregants. Genetic analyses were performed to investigate this phenomenon and the genotypes of the Ho type homothallic clones of Type I and Type II. Results of these genetic analyses have been most adequately explained by postulating three kinds of homothallic genes, each consisting of a single pair of alleles, HO/ho, HMalpha/hmalpha, and HMa/hma, respectively. One of them, the HMalpha locus, was proved to be loosely linked (64 stranes) to the mating-type locus. A spore having the HO hmalpha hma genotype gives rise to an Ho type homothallic diploid (Type I), the same as in the case of the D strain which has the HO HMalpha HMa genotype (Type II). A spore having the a HO hmalpha HMa or alpha HO HMalpha hma genotype will produce an Hp or Hq type homothallic diploid culture, respectively. The other genotypes, a HO HMalpha hma, alpha HO hmalpha HMa, and the genotypes combined with the ho allele give a heterothallic character to the spore culture. A possible molecular hypothesis for the mating-type differentiation with the controlling elements produced by the HMalpha and HMa genes is proposed.  相似文献   

9.
Lipid Synthesis During Sporulation of Saccharomyces cerevisiae   总被引:9,自引:5,他引:4  
Lipid synthesis was studied in both sporulating (diploid) and nonsporulating (haploid) cells of Saccharomyces cerevisiae. Two phases of lipid synthesis occur in diploid cells transferred to sporulation medium. Phase I, which occurs during the first 12 h of exposure to sporulation medium, was also observed in the haploid strains. Phase II, occurring from the 20th to the 25th h, coincided with the appearance of mature asci and was observed only in the diploid cells. The majority of phospholipid synthesis took place during period I, whereas neutral lipid synthesis occurred during both periods. Phospholipid synthesis was virtually identical in both type and quantity in the sporulating and nonsporulating strains.  相似文献   

10.
A V Stolbova 《Genetika》1987,23(8):1390-1398
This article continues the investigation of polyauxotrophic (PA) clones formed in early mitotic progeny of zygotes. Cloning and segregation analysis of PA progeny suggest an unusual state of diploid genome in these strains, which is expressed as elimination of the dominance effect of the wild allele and as suppression or conversion of either of two loci of mating type. In PA progeny, except for recombinant haploids, sporulating diploids and unstable clones were detected. The tetrad analysis of the diploids points to homozygotization for individual markers. Over-replication of diploid set of chromosomes, prior to meiosis, and replacement of the haploid nucleus (the product of meiosis) for the diploid nucleus may explain the appearance of sporulating segregants in the diploid meiotic progeny. Unstable segregants may be considered as heterokaryons with complex interaction of nuclei.  相似文献   

11.
The nonfunctional mutation of the homothallic gene HML alpha, designated hml alpha, produced two mutant alleles, hml alpha-1 and hml alpha-2. Both mutant clones were mixed cultures consisting of a mating-type cells and nonmating haploid cells. The frequencies of the two cell types were different, and a few diploid cells able to sporulate were found in the hml alpha-2 mutant. Conversions of an a mating-type cell to nonmater, and vice versa, were observed in both mutants. The conversion of an a mating phenotype to nonmating is postulated to occur by alteration of the a mating type to the sterile mating-type allele in the hml alpha-1 mutant. In tetrad dissection of prototrophic diploids that were obtained by rare mating of hml alpha-1 mutants with a heterothallic strain having the MATa ho HMRa HMLa genotype, many mating-deficient haploid segregants were found, while alpha mating-type segregants were observed in a similar diploid using an hml alpha-2 mutant. The mating-type-deficient haploid segregants were supposed to have the sterile alpha mating-type allele because the nonmating genetic trait always segregated with the mating-type locus. Sporogenous diploid cells obtained in the hml alpha-2 mutant clone had the MATa/MAT alpha HO/HO HMRa/HMRa hml alpha-2/hml alpha-2 genotype. These observations suggested that the hml alpha-1 allele produces a transposable element that gives rise to the sterile alpha mating type by transposition into the mating-type locus, and that the hml alpha-2 allele produces an element that provides alpha mating-type information, but is defective in the structure for transposition.  相似文献   

12.
《The Journal of cell biology》1983,96(6):1592-1600
Two mutants of Saccharomyces cerevisiae have been isolated from normal haploid MAT alpha strains and characterized as having temperature- sensitive, pleiotropic phenotypes for functions associated with mating. At the permissive temperature, 23 degrees C, they were found to behave as normal MAT alpha haploids with respect to mating efficiency, sporulation in diploids formed with MAT a strains, secretion of alpha- factor, and failure to secrete the MATa-specific products, a-factor and Barrier. At higher temperatures they were found to decline in mating and sporulation efficiency and to express the a-specific functions. Genetic analysis established that one of these mutants, PE34, carries a temperature-sensitive allele of the MAT alpha 2 gene and that the other, PD7, carries a temperature-sensitive allele of the TUP1 gene.  相似文献   

13.
Carbohydrate Metabolism During Ascospore Development in Yeast   总被引:54,自引:16,他引:54       下载免费PDF全文
Carbohydrate metabolism, under sporulation conditions, was compared in sporulating and non-sporulating diploids of Saccharomyces cerevisiae. Total carbohydrate was fractionated into trehalose, glycogen, mannan, and an alkali-insoluble fraction composed of glucan and insoluble glycogen. The behavior of three fractions was essentially the same in both sporulating and non-sporulating strains; trehalose, mannan, and the insoluble fraction were all synthesized to about the same extent regardless of a strain's ability to undergo meiosis or sporulation. In contrast, aspects of soluble glycogen metabolism depended on sporulation. Although glycogen synthesis took place in both sporulating and non-sporulating strains, only sporulating strains exhibited a period of glycogen degradation, which coincided with the final maturation of ascospores. We also determined the carbohydrate composition of spores isolated from mature asci. Spores contained all components present in vegetative cells, but in different proportions. In cells, the most abundant carbohydrate was mannan, followed by glycogen, then trehalose, and finally the alkali-insoluble fraction; in spores, trehalose was most abundant, followed by the alkali-insoluble fraction, glycogen, and mannan in that order.  相似文献   

14.
Homothallic switching of yeast mating type genes occurs as often as each cell division, so that a colony derived from a single haploid spore soon contains an equal number of MATa and MAT alpha cells. Cells of opposite mating types conjugate, and eventually the colony contains only nonmating MATa/MAT alpha diploids. Mutations that reduce the efficiency of homothallic MAT conversions yield colonies that still contain many haploid cells of the original spore mating type plus a few recently generated cells of the opposite mating type. These (a greater than alpha)- or (alpha greater than a)-mating colonies also contain some nonmating diploid cells. As an alternative to microscopic pedigree analysis to determine the frequency of mating type conversions in a variety of mutant homothallic strains, we analyzed the proportions of MATa, MAT alpha, and MATa/MAT alpha cells in a colony by examining the mating phenotypes of subclones. We developed a mathematical model that described the proportion of cell types in a slow-switching colony. This model predicted that the proportion of nonmating cells would continually increase with the size (age) of a colony derived from a single cell. This prediction was confirmed by determining the proportion of cell types in colonies of an HO swi1 strain that was grown for different numbers of cell divisions. Data from subcloning (a greater than alpha) and (alpha greater than a) colonies from a variety of slow-switching mutations and chromosomal rearrangements were used to calculate the frequency of MAT conversions in these strains.  相似文献   

15.
The ploidies and sporulation abilities of six brewer's yeasts were examined. One (YB11-1) out of the six was triploid and sporulating, another (IFO2031) was haploid, and the others (IFO1167, IFO2003, S341 and YB3-7) were diploid and non-sporulating. The five non-sporulating strains did not have the premeiotic DNA synthesis. Their non-sporulating phenotypes were genetically analyzed by examining the sporulation abilities of hybrids between brewer's yeasts and standard genetic strains of Saccharomyces cerevisiae. All non-sporulating brewer's yeasts complemented 32 sporulation-deficient mutations (spoT–spoT23, spo1–spo5, spo7, spo8, spo10, and spo11). Hybrids between brewer's yeasts and haploid or diploid strains homozygous for the mating-type locus had poor or no sporualtion. On the contrary, hybrids between brewer's yeasts and diploid strains heterozygous for the mating-type locus sporulated at a high frequency. These results indicated that the non-sporulating phenotype of brewer's yeasts was caused by a deficiency of the mating-type genes rather than by mutations of sporulation genes. The Southern hybridization probed with the MATa gene showed polymorphisms in mating-type genes of brewer's yeasts.  相似文献   

16.
SAD mutation of Saccharomyces cerevisiae is an extra a cassette.   总被引:8,自引:5,他引:3       下载免费PDF全文
Sporulation of Saccharomyces cerevisiae ordinarily requires the a1 function of the a mating type locus. SAD is a dominant mutation that allows strains lacking a1 (MAT alpha/MAT alpha and mata1/MAT alpha diploids) to sporulate. We provide functional and physical evidence that SAD is an extra cassette in the yeast genome, distinct from those at HML, MAT, and HMR. The properties of SAD strains indicate that the a cassette at SAD produces a limited amount of a1 product, sufficient for promoting sporulation but not for inhibiting mating and other processes. These conclusions come from the following observations. (i) SAD did not act by allowing expression of HMRa: mata1/MAT alpha diploids carrying SAD and only alpha cassettes at HML and HMR sporulated efficiently. (ii) SAD acted as an a cassette donor in HML alpha HMR alpha strains and could heal a mata1 mutation to MATa as a result of mating type interconversion. (iii) The genome of SAD strains contained a single new cassette locus, as determined by Southern hybridization. (iv) Expression of a functions from the SAD a cassette was limited by Sir: sir- SAD strains exhibited more extreme phenotypes than SIR SAD strains. This observation indicates that SAD contains not only cassette information coding for a1 (presumably from HMRa) but also sites for Sir action.  相似文献   

17.
The time course of synthesis and breakdown of various macromolecules has been compared for sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast cells transferred to potassium acetate sporulation medium. Both types of cells incorporate label into ribonucleic acid and protein. The gel electrophoresis patterns of proteins synthesized in sporulation medium are identical for sporulating and nonsporulating diploids; both are different from electropherograms of vegetative cells. Sporulating and nonsporulating strains differ with respect to deoxyribonucleic acid synthesis; no deoxyribonucleic acid is synthesized in the latter case, whereas the deoxyribonucleic acid complement is doubled in the former. Glycogen breakdown occurs only in sporulating strains. Breakdown of preexisting vegetative ribonucleic acid and protein molecules occurs much more extensively in sporulating than in nonsporulating cells. A timetable of these data is presented.  相似文献   

18.
Collins , O'Neil Ray . (Queens Coll., New York City.) Heterothallism and homothallism in two Myxomycetes. Amer. Jour. Bot. 48(8): 674–683. Illus. 1961.—Single-spore studies of 2 Myxomycetes, Didymium iridis and Fuligo cinerea, revealed that the former is heterothallic and the latter is homothallic. In D. iridis, 256 single-spore isolations were made from sporangia which developed in mass-spore cultures. Of these, 101 germinated and 22 yielded plasmodia that later fructified in most cases. The remaining 79 single-spore cultures produced clones of myxamoebae and swarm cells only. When 18 of the 79 clones were mated in all possible combinations, plasmodia developed in a pattern which showed that the clones were either (+) or (–) with regard to mating type. Fructifications were readily obtained from these plasmodia. Fifty-three single spores of the F1 generation were isolated. Of the 44 that germinated, 9 yielded plasmodia in monospore cultures, and 35 produced clones of myxamoebae and swarm cells only. Twenty-five of the F1 clones were back-crossed with their parents. Results of the back crosses show that each F1 clone is capable of yielding plasmodia with either the (+) or the (–) parent, never with both. When 14 of the F1 clones were mated among themselves, a (+) and (–) mating type system was again revealed. Most of the 22 original single-spore cultures which produced plasmodia, later formed sporangia. From these sporangia, 88 spores were isolated. Seventy-two of these germinated and yielded large populations of swarm cells and myxamoebae, but none produced plasmodia. Twenty of the 72 clones were then mated among themselves. Some matings resulted in plasmodial formation, but the pattern was difficult to interpret. However, when these 20 clones were mated with known (+) and (–) clones, the results appear to be in keeping with a (+) and (–) mating type system. In F. cinerea, 219 single spores were isolated from aethalia derived from mass-spore cultures. Of these, 144 germinated and the same number yielded plasmodia. Fructifications were easily obtained from such plasmodia. Thirty-five second-generation single spores were isolated, of which 15 germinated and 15 yielded plasmodia. These results indicate that F. cinerea is homothallic.  相似文献   

19.
Robson GE  Williams KL 《Genetics》1979,93(4):861-875
The genetic basis of vegetative incompatibility in the cellular slime mold, Dictyostelium discoideum, is elucidated. Vegetatively compatible haploid strains from parasexual diploids at a frequency of between 10-6 and 10-5, whereas "escaped" diploids are formed between vegetatively incompatible strains at a frequency of ~10-8. There is probably only a single vegetative incompatibility site, which appears to be located at, or closely linked to, the mating-type locus. The nature of the vegetative incompatibility is deduced from parasexual diploid formation between wild isolates and tester strains of each mating type, examination of the frequency of formation of "escaped" diploids formed between vegetatively incompatible strains, and examination of the mating type and vegetative incompatibility of haploid segregants obtained from "escaped" diploids.  相似文献   

20.
Haber JE  George JP 《Genetics》1979,93(1):13-35
Studies of heterothallic and homothallic strains of Saccharomyces cerevisiae have led to the suggestion that mating-type information is located at three distinct sites on chromosome 3, although only information at the mating-type (MAT) locus is expressed (Hicks, Strathern and Herskowitz, 1977). We have found that the recessive mutation cmt permits expression of the normally silent copies of mating-type information at the HMa and HM alpha loci. In haploid strains carrying HMa and HM alpha, the cmt mutation allows the simultaneous expression of both a and alpha information, leading to a nonmating ("MATa/MAT alpha") phenotype. The effects of cmt can be masked by changing the mating-type information at HMa or HM alpha. For example, a cell of genotype MATa hma HM alpha cmt has an a mating type, while a MAT alpha hma HM alpha cmt strain is nonmating. Expression of mating-type information at the HM loci can correct the mating and sporulation defects of the mata* and mat alpha 10 alleles. Meiotic segregants recovered from cmt/cmt diploids carrying the mat mutations demonstrate that these mutants are not "healed" to normal MAT alleles, as is the case in parallel studies using the homothallism gene HO.--All of the results are consistent with the notion that the HMa and hm alpha alleles both code for alpha information, while HM alpha and hma both code for a information. The cmt mutation demonstrates that these normally silent copies of mating-type and sporulation information can be expressed and that the information at these loci is functionally equivalent to that found at MAT. The cmt mutation does not cause interconversions of mating-type alleles at MAT, and it is not genetically linked to MAT, HMa, HM alpha or HO. In cmt heterozygotes, cmt becomes homozygous at a frequency greater than 1% when the genotype at the MAT locus is mata*/MAT alpha or mat alpha 10/MATa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号