首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of La3+ with phosphatidylserine vesicles is elucidated by binding studies, differential scanning calorimetry, X-ray diffraction, freeze fracture electron microscopy, and release of vesicle contents. La3+ effectively competes with Ca2+ for phosphatidylserine binding sites. The saturation level is close to a La/lipid ratio of 1:3. A concentration of 0.1 mM of La3+ is sufficient to induce fusion between sonicated vesicles.  相似文献   

2.
The interaction of La3+ with phosphatidylserine vesicles is studied by differential scanning calorimetry, 140La binding, 31P-NMR chemical shifts and relaxation rates, carboxyfluorescein and [14C]sucrose release, X-ray diffraction and freeze-fracture electron microscopy. In the presence of La3+ concentrations above 1 mM and an incubation temperature of 38°C, i.e., at the phase transition temperature of the complex La/phosphatidylserine, the binding ratio of La/lipid exceeds a 13 ratio, reaching saturation at a 12 ratio. Analysis, employing a modified Gouy-Chapman equation, indicates a significant increase in the intrinsic binding constant of La/phosphatidylserine when the La3+ concentration exceeds the threshold concentration for leakage. The analysis illustrates that at the molecular level the binding of La3+ can be comparable to or even weaker than that of Ca2+, but that even when present at smaller concentrations La3+ competes with and partially displaces Ca2+ from membranes or other negatively charged surfaces. The results suggest that the sequence La3+>Ca2+>Mg2+ reflects both the binding strength of these cations to phosphatidylserine as well as their ability to induce leakage, enhancement of 31P spin-lattice relaxation rates, fusion and other structural changes. The leakage, fusion, and other structural changes are more pronounced at the phase transition temperature of the La/lipid complex.  相似文献   

3.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3–5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 μm diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

4.
稀土La3+跨PC12细胞膜行为研究   总被引:1,自引:0,他引:1  
使用AR-CM-M1C阳离子测定系统,发展Fura-2荧光测定技术,将其应用于测定细胞内游离稀土离子La3+,并以此研究了La3+跨PC12细胞(大鼠嗜铬细胞瘤细胞)膜的行为.结果表明:在模拟细胞内离子组分,pH=7.05的溶液中,测得La3+-Fura-2的表观解离常数为3.27×10-11 mol·L-1.对于PC12细胞,静息条件下La3+不能跨越细胞膜进入胞内.与钙离子通道相关的KCl和去甲肾上腺素均不能刺激稀土La3+过膜.用哇巴因(ouabain)使胞内Na+超载后,La3+可过膜进入细胞内,且过膜量与胞外La3+浓度和胞内Na+超载程度有一定的浓度依赖关系,提示La3+可以经由Na+/La3+交换机制过膜而进入细胞内.  相似文献   

5.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

6.
Ca2+-induced fusion of glycolipid-phospholipid vesicles containing several different anionic phospholipids was investigated, with and without lectin-mediated intervesicle contact. In vesicles containing phosphatidylserine, phosphatidylinositol or its mono- or diphosphate as the anionic phospholipid fusion was induced only at 1–10 mM Ca2+ both in the absence and presence of lectin. In contrast, the Ca2+-threshold for fusion of phosphatidate-containing vesicles was reduced to 0.1 mM Ca2+ by lectin-mediated intermembrane contact.  相似文献   

7.
The toxic mechanism of La3+ to Escherichia coli is investigated by detecting the concentration change of La3+ in E. coli cells growing in La3+-containing medium. Stimulatory action and inhibitory effect of La3+ in different concentrations can be attributed to the permeability alteration of the cell. Low concentration of La3+ increases the nutrition absorbability of the cells from the cultures as a result of increased cell permeability, and high concentration of La3+ causes the accumulation of La3+ in cells, resulting in the toxic effects on the E. coli cells.  相似文献   

8.
以未老化和人工老化后的沙葱(Allium mongolicum Regel.)种子为材料,采用氯化铈(Ce3+)和氯化镧(La3+)浸种,测定种子萌发和生理指标,探讨Ce3+和La3+浸种对种子萌发、老化种子活力和生理特性的影响。结果显示:(1)在老化0~5 h时,Ce3+和La3+处理可显著促进沙葱种子萌发,提高种子活力;在老化5 h后,Ce3+和La3+处理对种子萌发无明显促进作用。(2)在老化0~15 h时,Ce3+和La3+处理的沙葱种子中抗氧化酶活性和抗坏血酸(AsA)含量提高,其超氧阴离子自由基(O2-·)产生速率、过氧化氢(H2O2)含量和丙二醛(MDA)含量显著降低;在老化15 h后,Ce3+和La3+处理的种子抗氧化酶活性提高、AsA含量降低,O2-·产生速率和MDA含量提高。(3)在老化5 h时,沙葱种子呼吸速率发生跃变达到最大,Ce3+和La3+处理显著降低了种子呼吸速率。(4)Ce3+和La3+处理在老化0~5 h时提高了沙葱种子超弱发光(UWL)强度,但在老化5 h后沙葱种子的UWL强度降低。研究认为,在沙葱种子人工老化初期,Ce3+和La3+浸种处理可以诱导增强种子抗氧化酶活性和提高AsA含量,有效清除因老化产生积累的过量活性氧(ROS),减轻过氧化伤害,提高种子活力;种子老化中后期,其内部ROS产生与清除系统发生紊乱,加剧了ROS对种子结构的损伤,Ce3+和La3+浸种处理的缓解效应丧失。  相似文献   

9.
Dynamic light scattering has been used to study the temperature dependence of Ca2+-induced fusion of phosphatidylserine vesicles and mixed vesicles containing phosphatidylserine and different phosphatidylcholines. The final vesicle size after Ca2+ and EDTA incubation serves as a measure of the extent of fusion. With phosphatidylserine vesicles, the extent of fusion shows a sharp maximum at an incubation temperature which depends on the Ca2+ concentration between 0.8 and 2 mM. The shift in the fusion peak temperature with Ca2+ concentration is similar to the typical shift in the phase transition temperature with divalent cation concentration in acidic phospholipids. The results suggest a direct correlation between the fusion peak temperature and the phase transition temperature in the presence of Ca2+ prior to fusion. With mixed vesicles containing up to 33% of a phosphatidylcholine in at least 2 mM Ca2+, the extent of fusion as a function of incubation temperature also shows a maximum. The fusion peak temperature is essentially independent of the quantity and type of phosphatidylcholine and the Ca2+ concentration, and identical to that with pure phosphatidylserine in excess Ca2+. The results imply that Ca2+-induced molecular segregation occurs first, and fusion subsequently takes place between pure phosphatidylserine domains.  相似文献   

10.
Mn2+ binding to vesicles prepared from several different species of anionic phospholipids was determined as a function of temperature by electron paramagnetic resonance (EPR). The Mn2+ affinities of phosphatidylserine, cardiolipin and egg yolk phosphatidylglycerol all increased monitonically with temperature.Vesicles prepared from hydrogenated and natural (bovine) phosphatidylserine were monitored with respect to hydrocarbon chain fluidity as well as Mn2+ binding. Contrary to expectations based on surface potential considerations, the affinity of phosphatidylserine for divalent cations was apparently not lowered in going from the gel state to the liquid crystalline state of the bilayer. The results are instead consistent with an enhancement in cation affinity with increased lipid fluidity.Dipalmitoyl phosphatidylglycerol vesicle fluidity and Mn2+ binding were also studied with EPR. A large reduction in the measured Mn2+ affinity accompanied melting of the phospholipid, but observed hysteresis in the temperature dependence of the binding render uncertain any simple explanation based on changes in surface potential. Supplementary light scattering data indicated that vesicle aggregation was involved in the hysteresis phenomena.  相似文献   

11.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

12.
The binding of glutamate decarboxylase (GAD), to phospholipid vesicles (liposomes) in the absence and in the presence of several Ca2+ and Mg2+ concentrations was studied. Phosphatidylcho-line-phosphatidylserine (4:1) liposomes are capable of binding GAD in a Ca2+-dependent manner. The per cent of GAD bound increased from 5 to 65°., in a sigmoid shape with Ca2+ concentrations in the 0.2-4 mm range. Mg2+ also induces GAD binding but is less effective than Ca2+ The Ca2+ -dependent binding of GAD is not the result of unspecific association of protein, since Ca2+ did not promote any binding of choline acetyltransferase or lactate dehydrogenase. Furthermore, the relative specific activity (oo enzyme activity/% protein) of GAD associated to liposomes increases 4-fold from 0 to 2 mm Ca2+. The per cent of GAD bound attains a plateau at a ratio phospholipid/protein of about 1.5. and decreases when the pH increases from 6.5 or 6.8 to 7 or 7.25. Na+ or K+ at a 100mm concentration also induce binding of GAD to liposomes. Phosphatidylcholine liposomes (without phosphatidylserine) practically did not bind GAD at any Ca2+ concentration. The Ca2+-dependent association of GAD to phosphatidylcholine-phosphatidylserine liposomes is very similar to that previously reported using brain membranes, and it correlates also well with the reported Ca2+-dependent aggregation of phosphatidylserine molecules in phospholipid membranes of similar composition. It is concluded that phosphatidylserine is probably involved in the Ca2+-dependent binding of GAD to brain membranes. Phospholipid vesicles seem to be a useful experimental model for studying the mechanisms of this GAD association to membranes and the possible physiological implications of the GAD-Ca2+-membrane interaction regarding the release of newly synthesized GABA from nerve endings.  相似文献   

13.
We have investigated the contribution of various phospholipids to membrane fusion induced by divalent cations. Fusion was followed by means of a new fluorescence assay monitoring the mixing of internal aqueous contents of large (0.1 μm diameter) unilamellar liposomes. The rate and extent of fusion induced by Ca2+ in mixed phosphatidylserine/phosphatidylcholine vesicles were lower compared to those in pure phosphatidylserine vesicles. The presence of 50% phosphatidylcholine completely inhibited fusion, although the vesicles aggregated upon Ca2+ addition. When phosphatidylserine was mixed with phosphatidylethanolamine, however, rapid fusion could be induced by Ca2+ even in mixtures that contained only 25% phosphatidylserine. Phosphatidylethanolamine also facilitated fusion by Mg2+ which could not fuse pure phosphatidylserine vesicles. In phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine mixtures, in which the phosphatidylcholine content was kept at 25%, phosphatidylethanolamine could not substitute for phosphatidylserine, and the fusogenic capacity of Mg2+ was abolished by the presence of merely 10% phosphatidylcholine. The initial rate of release of vesicle contents was slower than the rate of fusion in all the mixtures used. The presence of phosphate effected a considerable decrease in the threshold concentration of Ca2+ and also enhanced  相似文献   

14.
Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes   总被引:1,自引:0,他引:1  
In order to characterize the potentially deleterious effects of toxic Hg2+ and Cd2+ on lipid membranes, we have studied their binding to liposomes whose composition mimicked erythrocyte membranes. Fluorescence spectroscopy utilizing the concentration dependent quenching of Phen Green™ SK by Hg2+ and Cd2+ was found to be a sensitive tool to probe these interactions at metal concentrations ≤1 μM. We have systematically developed a metal binding affinity assay to screen for the interactions of Hg2+ or Cd2+ with certain lipid classes. A biomimetic liposome system was developed that contained four major lipid classes of erythrocyte membranes (zwitterionic lipids: phosphatidylcholine and phosphatidylethanolamine; negatively charged: phosphatidylserine and neutral: cholesterol). In contrast to Hg2+, which preferentially bound to the negatively charged phosphatidylserine compared to the zwitterionic components, Cd2+ bound stronger to the two zwitterionic lipids. Thus, the observed distinct differences in the binding affinity of Hg2+ and Cd2+ for certain lipid classes together with their known effects on membrane properties represent an important first step toward a better understanding the role of these interactions in the chronic toxicity of these metals.  相似文献   

15.
Tubulointerstitial nephritis is a cardinal renal manifestation of leptospirosis. LipL32, a major lipoprotein and a virulence factor, locates on the outer membrane of the pathogen Leptospira. It evades immune response by recognizing and adhering to extracellular matrix components of the host cell. The crystal structure of Ca2+-bound LipL32 was determined at 2.3 Å resolution. LipL32 has a novel polyD sequence of seven aspartates that forms a continuous acidic surface patch for Ca2+ binding. A significant conformational change was observed for the Ca2+-bound form of LipL32. Calcium binding to LipL32 was determined by isothermal titration calorimetry. The binding of fibronectin to LipL32 was observed by Stains-all CD and enzyme-linked immunosorbent assay experiments. The interaction between LipL32 and fibronectin might be associated with Ca2+ binding. Based on the crystal structure of Ca2+-bound LipL32 and the Stains-all results, fibronectin probably binds near the polyD region on LipL32. Ca2+ binding to LipL32 might be important for Leptospira to interact with the extracellular matrix of the host cell.  相似文献   

16.
Research of the entry of rare earth elements Eu3+ and La3+ into plant cell   总被引:8,自引:0,他引:8  
Whether rare earth elements can enter into plant cells remains controversial. This article discusses the ultracellular structural localization of lanthanum (La3+) and europium (Eu3+) in the intact plant cells fed by rare earth elements Eu3+ and La3+. Eu-TTA fluorescence analysis of the plasmalemma, cytoplast, and mitochondria showed that Eu3+ fluorescence intensities in such structures significantly increased. Eu3+ can directly enter or be carried by the artificial ion carrier A23187 into plant cells through the calcium ion (Ca2+) channel and then partially resume the synthesis of amaranthin in the Amaranthus caudatus growing in the dark. Locations of rare earth elements La3+ and Eu3+ in all kinds of components of cytoplasmatic organelles were determined with transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray microanalysis. The results of energy-dispersive X-ray microanalysis indicated that Eu3+ and La3+ can be absorbed into plant cells and bind to the membranes of protoplasm, chloroplast, mitochondrion, cytoplast, and karyon. These results provide experimental evidence that rare earth elements can be absorbed into plant cells, which would be the basis for interpreting physiological and biochemical effects of rare earth elements on plant cells.  相似文献   

17.
The interaction of phosphatidylserine vesicles with Ca2+ and Mg2+ has been examined by several techniques to study the mechanism of membrane fusion. Data are presented on the effects of Ca2+ and Mg2+ on vesicle permeability, thermotropic phase transitions and morphology determined by differential scanning calorimetry, X-ray diffraction, and freeze-fracture electron microscopy. These data are discussed in relation to information concerning Ca2+ binding, charge neutralization, molecular packing, vesicle aggregation, phase transitions, phase separations and vesicle fusion.The results indicate that at Ca2+ concentrations of 1.0–2.0 mM, a highly cooperative phenomenon occurs which results in increased vesicle permeability, aggregation and fusion of the vesicles. Under these conditions the hydrocarbon chains of the lipid bilayers undergo a phase change from a fluid to a crystalline state. The aggregation of vesicles that is observed during fusion is not sufficient in itself to induce fusion without a concomitant phase change. Mg2+ in the range of 2.0–5.0 mM induces aggregation of phosphatidylserine vesicles but no significant fusion nor a phase change.From the effect of variations in pH, temperature, Ca2+ and Mg2+ concentration on the fusion of vesicles, it is concluded that the key event leading to vesicle membrane fusion is the isothermic phase change induced by the bivalent metals. It is proposed that this phase change induces a transient destabilization of the bilayer membranes that become susceptible to fusion at domain boundaries.  相似文献   

18.
Use-dependent declines of Na+ currents in myelinated frog nerve fibres were measured during a train of depolarizing pulses in solutions containing tetrodotoxin (TTX) or saxitoxin (STX). The following effects of external monovalent (Na+), divalent (Ca2+, Mg2+) and trivalent (La2+) cations on use dependence were found: Increasing the Ca2+ concentration from 2 to 8 mM shifts its voltage dependence by 20 mV whereas no significant use-dependent decline occurred at 0.2 mM Ca2+. Doubling the external Na+ concentration in 0.2 mM Ca2+ solutions did not initiate phasic block. External Mg2+ ions induced a smaller, and La2+ ions a larger, use dependence. The time constants of the current decline were 4-fold greater in 1.08 mM La2+. The static block of Na+ currents by La3+ could be directly demonstrated by the relief of block during a train of pulses. The results are qualitatively explained by a toxin binding site at the Na+ channel whose affinity for TTX or STX depends oni) the gating conformation of the channel, probably the inactivation andii) the occupancy of a blocking site by di- or trivalent external cations.  相似文献   

19.
31P-NMR experiments on intact pig small intestine brush-border membrane vesicles (BBMV) and detergent-solubilized membranes gave direct insights into the organization of the phospholipids (PL) and their interaction with zinc and cadmium ions. Various endogenous PL were identified from well resolved BBM micelle spectra. These experiments revealed a strong interaction of Zn2+ and Cd2+ with the negatively charged phosphatidylinositol and phosphatidylserine. In BBM micelles, a progressive time-dependent PL degradation occurred in the absence of ions and indicated the presence of active phospholipases. The presence of zinc inhibited the degradation process whereas cadmium had the opposite influence. 31P spectra of BBMV were carefully characterized. Neither zinc nor cadmium affected the PL bilayer structural organization. A degradation of PL, monitored by the increase of the inorganic phosphate (P i) signal, also occurred in vesicles but to a lesser extent than in micelles. A 2/3 internal, 1/3 external PL asymmetry was observed in the absence and presence of ions. Offprint requests to: P. Ripoche  相似文献   

20.
23Na NMR relaxation rate measurements show that Na+ binds specificially to phosphatidylserine vesicles and is displaced partially from the binding site by K+ and Ca2+ but to a considerably less extent by tetraethylammonium ion. The data indicate that tetraethylammonium ion affects the binding of Na+ only slightly, by affecting the surface potential through its presence in the double layer, without competing for a phosphatidylserine binding site. Values for the intrinsic binding constant for the Na+-phosphatidylserine complex that would be consistent with the competition experiments (and the dependence of the relaxation rate on concentration of free Na+) fall in the range 0.4–1.2 M?1 with a better fit towards the higher values. We conclude that in the absence of competing cations in solution an appreciable fraction of the phosphatidylserine sites could be associated with bound Na+ at 0.1 M Na+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号