首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Childhood-onset proximal spinal muscular atrophy (SMA) is a heritable neurological disorder, which has been mapped by genetic linkage analysis to chromosome 5q13, in the interval between markers D5S435 and D5S557. Here, we present gene sequences that have been isolated from this interval, several of which show sequence homologies to exons of beta-glucuronidase. These gene sequences are repeated several times across the candidate region and are also present on chromosome 5p. The arrangement of these repetitive gene motifs is polymorphic between individuals. The high degree of variability observed may have some influence on the expression of the genes in the region. Since SMA is not inherited as a classical autosomal recessive disease, novel genomic rearrangements arising from aberrant recombination events between the complex repeats may be associated with the phenotype observed.  相似文献   

2.
Although autosomal recessive spinal muscular atrophy (SMA) has been mapped to chromosome 5q12-q13, there is for this region no genetic map based on highly informative markers. In this study we present the mapping of two previously reported microsatellite markers in 40 CEPH and 31 SMA pedigrees. We also describe the isolation of a new microsatellite marker at the D5S112 locus. The most likely order of markers (with recombination fractions given in parentheses) is 5cen-D5S6-(.02)-D5S125-(.04)-(JK53CA1/2,D5S11 2)-(.04)-D5S39-qter. The relative order of D5S6, D5S112, and D5S39 was confirmed by in situ hybridization. Multipoint linkage analysis in 31 SMA families indicates that the SMA locus lies in the 6-cM interval between D5S6 and JK53CA1/2, D5S112.  相似文献   

3.
The locus responsible for the childhood-onset proximal spinal muscular atrophies (SMA) has recently been mapped to an area of 2–3 Mb in the region q12–13.3 of chromosome 5. We have used a series of radiation hybrids (RHs) containing distinct parts of the SMA region as defined by reference markers. A cosmid library was constructed from one RH. Thirteen clones were isolated and five of these were mapped within the SMA region. Both RH mapping and fluorescence in situ hybridization analysis showed that two clones map in the region between loci D5S125 and D5S351. One of the cosmids contains expressed sequences. Polymorphic dinucleotide repeats were identified in both clones and used for segregation analysis of key recombinant SMA families. One recombination between the SMA locus and the new marker 9Ic (D5S685) indicates that 9Ic is probably the closest distal marker. The absence of recombination between the SMA locus and marker Fc (D5S684) suggests that Fc is located close to the disease gene. These new loci should refine linkage analysis in SMA family studies and may facilitate the isolation of the disease gene.  相似文献   

4.
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder resulting in loss of motor neurons. We have performed linkage analysis on a panel of families using nine markers that are closely linked to the SMA gene. The highest lod score was obtained with the marker D5S351 (Zmax = 10.04 at = 0 excluding two unlinked families, and Zmax = 8.77 at = 0.007 with all families). One type III family did not show linkage to the 5q13 markers, and in one type I consanguineous family the affected individual did not show homozygosity except for the marker D5S435. Three recombinants were identified with the closest centromeric marker, D5S435, which position the gene telomeric of this marker. These recombinants will facilitate finer mapping of the location of the SMA gene. Lastly, two families provide strong evidence for a remarkable variability in presentation of the SMA phenotype, with the age at onset in one family varying from 17 months to 13 years.  相似文献   

5.
The spinal muscular atrophies (SMA) are among the most common autosomal recessive disorders. We have performed linkage analysis using both standard restriction fragment length polymorphisms (RFLPs) as well as microsatellite polymorphisms [Ca(n)] on 49 Canadian SMA families (types 1, 2, and 3) that both flank and are linked to SMA. The closest SMA linkage was observed with the MAP1B locus (zmax=8.04, max=0.0). Multipoint linkage analysis gave a high probability of SMA mapping between D5S6 and D5S39. Only one family (type 3) that fulfilled our diagnostic criteria for SMA showed nonlinkage with 5q13 markers. This study shows the feasibility of accurate molecular diagnosis of SMA utilizing 5q13 satellite polymorphisms.  相似文献   

6.
A gene for pyridoxine-dependent epilepsy maps to chromosome 5q31   总被引:12,自引:0,他引:12       下载免费PDF全文
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder characterized by generalized seizures in the first hours of life and responding only to pyridoxine hydrochloride. The pathogenesis of PDE is unknown, but an alteration in the binding of pyridoxal 5-phosphate to glutamic acid decarboxylase (GAD) has been postulated in patients with PDE. Results are reported for genetic linkage analyses in four families with consanguineous parents and in one family with nonconsanguineous parents. The GAD1 (2q31) and GAD2 genes (10p23) were tested and excluded. A genomewide search was subsequently performed, using microsatellite markers at an average distance of 10 cM, and the search revealed linkage of the disease-causing gene to markers on chromosome 5q31.2-q31.3 (maximum LOD score [Z(max)] 8.43 at recombination fraction [theta] 0 and Zmax=7.58 at straight theta=0 at loci D5S2017 and D5S1972, respectively). A recombination event, between loci D5S638 and D5S463, in one family defined the distal boundary, and a second recombination event between loci D5S2011 and D5S2017 in another family defined the proximal boundary of the genetic interval encompassing the PDE gene (5.1 cM). Ongoing studies may lead to the identification of the disease-causing gene.  相似文献   

7.
Autosomal recessive spinal muscular atrophy (SMA) has been mapped to a 6-cM interval on chromosome 5q12–13.3, flanked proximally by locus D5S6 and distally by locus D5S112. In this study we describe the isolation of two new microsatellite markers (EF1/2a and EF13/14) near locus D5S125, which lies 2 cM distal to D5S6. We show by linkage analysis and the study of the recombinants in 55 SMA pedigrees that the disease lies in the 4-cM interval between EF1/2a and D5S112. Fluorescence in situ analysis of cosmids from D5S6, EF1/2a and D5S112 confirms the genetic order and relative distance of markers. The microsatellites EF1/2a and EF13/14 are the first highly polymorphic PCR based proximal markers in SMA to be described, and will be of value in prental prediction of the disorder.  相似文献   

8.
The critical region containing the spinal muscular atrophy (SMA) gene is flanked by the 5q11–q13 markers, D5S435 and D5S557, as determined by linkage analysis. Here we present the results of an analysis of a Dutch SMA family with the multicopy microsatellite marker CMS1. A crossover is revealed in the critical SMA region. We conclude that at least one of the CMS1 subloci maps proximal to the SMA gene. This reduces the minimal SMA region from approximately 1.4 Mb to 600–700 kb.  相似文献   

9.
We report the mapping and characterization of 12 microsatellite markers including 11 novel markers. All markers were generated from overlapping YAC clones that span the spinal muscular atrophy (SMA) locus. PCR amplification of 32 overlapping YAC clones shows that 9 of the new markers (those set in italics) map to the interval between the two previous closest flanking markers (D5S629 and D5S557): cen - D5S6 - D5S125 - D5S435 - D5S1407-D5S629-D5S1410-D5S1411/D5S1412-D5S1413-D5S1414-D5Z8-D5Z9-CATT1-D5Z10/D5Z6-D5S557-D5S1408-D5S1409-D5S637-D5S351-MAP1B-tel. Four of these new markers detect multiple loci in and out of the SMA gene region. Genetic analysis of recombinant SMA families indicates that D5S1413 is a new proximal flanking locus for the SMA gene. Interestingly, among the 40 physically mapped loci, the 14 multilocus markers map contiguously to a genomic region that overlaps, and perhaps helps define, the minimum genetic region encompassing the SMA gene(s).  相似文献   

10.
The microtubule-associated protein 1B (MAP1B) locus has been mapped in close proximity to spinal muscular atrophy (SMA) on chromosome 5q13. We have identified a second microsatellite within a MAP1B intron, which increases the heterozygosity of this locus to 94%. Two unambiguous recombination events establish MAP1B as a closely linked, distal flanking marker for the disease locus, while a third recombinant establishes D5S6 as the proximal flanking marker. The combination of key recombinants and linkage analysis place the SMA gene in an approximately 2-cM interval between loci D5S6 and MAP1B. Physical mapping and cloning locate MAP1B within 250 kb of locus D5S112. The identification and characterization of a highly polymorphic gene locus tightly linked to SMA will facilitate isolation of the disease gene, evaluation of heterogeneity, and development of a prenatal test for SMA.  相似文献   

11.
The proximal spinal muscular atrophies (SMA) represent the second most common autosomal recessive disorder, after cystic fibrosis. The gene responsible for chronic SMA has recently been mapped to chromosome 5q by using genetic linkage studies. Among six markers mapping to this region, five were shown to be linked with the SMA locus in 39 chronic SMA families each containing at least two affected individuals. Multilocus analysis by the method of location score was used to establish the best estimate of the SMA gene location. Our data suggest that the most likely location for SMA is between loci D5S6 and D5S39. The genetic distances between these two markers are estimated to be 6.4 cM in males and 11.9 cM in females. Since meiosis were informative with D5S39 and D5S6 in 92% and 87% of SMA families, respectively, it is hoped that the present study will contribute to the calculation of genetic risk in SMA families.  相似文献   

12.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2-10/10,000 individuals. Chromosome 15q11-q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the gamma-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11-q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11-q13.  相似文献   

13.
The gene for autosomal, dominantly inherited, non-chromaffin paragangliomas has previously been mapped at 11q23-qter by linkage analysis of a single family. In the present study, we have used genetic markers from 11q for the analysis of two distantly related pedigrees with the same disorder. Linkage analysis and haplotyping indicate that the gene underlying the disorder in the present family is located on chromosome 11q proximal to the tyrosinase gene locus (11q14–q21). Closely linked markers are the human homologue of the murine INT2 protooncogene and the anonymous DNA marker D11S527. A maximum lod score of 5.4 (=0.0) has been obtained for linkage between the disorder and the chromosomal region defined by these markers. The human INT2 gene can be regarded as a candidate for the disorder on the basis of its expression pattern during embryogenesis in the mouse. However, haplotype analysis indicates that this gene is probably not the predisposing genetic factor in the present family.  相似文献   

14.
Best vitelliform macular dystrophy (VMD2) has previously been linked to several microsatellite markers from chromosome 11. Subsequently, additional genetic studies have refined the Best disease region to a 3.7-cM interval flanked by markers at D11S903 and PYGM. To further narrow the interval containing the Best disease gene and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 on the short arm and at D11S480 in band q13.2-13.3 on the proximal long arm. This study demonstrates that the physical size of the Best disease region is exceedingly larger than previously estimated from the genetic data, because of the proximity of the defective gene to the centromere of chromosome 11.  相似文献   

15.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2–10/10,000 individuals. Chromosome 15q11–q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the γ-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11–q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11–q13.  相似文献   

16.
The gene for autosomal recessive forms of spinal muscular atrophy (SMA) has recently been mapped to chromosome 5ql3, within a 4-cM region between the blocks D5S465/D5S125 and MAP-1B/D5S112. We identified two new highly polymorphic microsatellite DNA markers—namely, AFM265wf5 (D5S629) and AFM281yh9 (D5S637)—which are the closest markers to the SMA locus. Multilocus analysis by the location-score method was used to establish the best estimate of the SMA gene location. Our data suggest that the most likely location for SMA is between locus D5S629 and the block D5S637/D5S351/MAP-1B/D5S112/D5S357. Genetic analysis of inbred SMA families, based on homozygosity by descent and physical mapping using mega-YACs, gave additional information for the loci order as follows: cen–D5S6–D5S125/D5S465–D5S435–D5S629–SMA–D5S637–D5S351–MAP–1B/D5S112–D5S357–D5S39–tel. These data give the direction for bidirectional walking in order to clone this interval and isolate the SMA gene.  相似文献   

17.
Spinal muscular atrophy (SMA) is a relatively common, autosomal recessively inherited neurodegenerative disorder that maps to human chromosome 5q13. This region of the human genome has an intricate genomic structure that has complicated the evaluation of SMA candidate genes. We have chosen to study the mouse region syntenic for human SMA in the hope that the homologous mouse interval would contain the same genes as human 5q13 on a simpler genomic background. Here, we report the mapping of such a region to mouse chromosome 13 and to the critical interval forLgn1,a mouse locus responsible for modulating the intracellular replication and pathogenicity of the bacteriumLegionella pneumophila.We have generated a mouse YAC contig across theLgn1/Smainterval and have mapped the two flanking gene markers for the human SMA locus, MAP1B and CCNB1, onto this contig. In addition, we have localized the two SMA candidate genes, SMN and NAIP, to theLgn1critical region, making these two genes candidates for theLgn1phenotype. Upon subcloning of the YAC contig into P1s and BACs, we have detected a large, low copy number repeat that contains at least one copy ofNaipexon 5. Identification of theLgn1gene will either provide a novel function for SMN or NAIP or reveal the existence of another, yet uncharacterized gene in the SMA critical region. Mutations in such a gene might help to explain some of the phenotypic variability among the human SMAs.  相似文献   

18.
The Friedreich's ataxia locus has been previously assigned to chromosome 9q 13-21.1 by the demonstration of tight linkage to two anonymous DNA markers. MCT112 (Z greater than 80, theta = 0) and DR47 (Z greater than 50, theta = 0). The absence of recombination between these three loci has prevented the resolution of gene/probe order in this region, impeding strategies for gene isolation. We report physical mapping over a 4-Mb genomic interval, linking the markers MCT112 and DR47 on a common 460-kb NotI fragment and identifying 11 CpG islands in the 1.7-Mb interval most likely to contain the Friedreich's ataxia locus. Four of these islands were detected only by analysis of three YAC clones spanning a 700-kb interval including the MCT112/DR47 cluster. Without clear evidence of the precise location of the disease locus from recombination events, each of these regions must be considered as specifying a potential "candidate" sequence for the mutated gene.  相似文献   

19.
Paralogous regions are duplicated segments of chromosomal DNA that have been acquired during the evolution of the genome. Subsequent divergent evolution of the genes within paralogous regions can lead to the formation of gene families. Here, we report the identification of a region on Chromosome (Chr) 6 at 6p21.3 that is paralogous with the Spinal Muscular Atrophy (SMA) gene region on Chr 5 at 5q13.1. Partial characterization of this region identified nine sequences all of which are highly homologous to DNA sequences of the SMA gene region at 5q13.1. These sequences include four β-glucuronidase sequences, two retrotransposon sequences, a novel cDNA, a Sequence Tagged Site (STS), and one that is homologous to exon 9 of the Neuronal Apoptosis Inhibitor Protein (NAIP) gene. The 6p21.3 paralogous SMA region may contain genes that are related to those in the SMA region at 5q13.1; however, a direct association of this region with SMA is unlikely given that no linkage of SMA with Chr 6 has been reported. Received: 12 May 1997 / Accepted: 13 November 1997  相似文献   

20.
Fibrosis is considered as a central factor in the loss of renal function in chronic kidney diseases. The origin of fibroblasts and myofibroblasts that accumulate in the interstitium of the diseased kidney is still a matter of debate. It has been shown that accumulation of myofibroblasts in inflamed and fibrotic kidneys is associated with upregulation of fibroblast-specific protein 1 (FSP1, S100A4), not only in the renal interstitium but also in the injured renal epithelia. The tubular expression of FSP1 has been taken as evidence of myofibroblast formation by epithelial–mesenchymal transition (EMT). The identity of FSP1/S100A4 cells has not been defined in detail. We originally intended to use FSP1/S100A4 as a marker of putative EMT in a model of distal tubular injury. However, since the immunoreactivity of FSP1 did not seem to fit with the distribution and shape of fibroblasts or myofibroblasts, we undertook the characterization of FSP1/S100A4-expressing cells in the interstitium of rodent kidneys. We performed immunolabeling for FSP1/S100A4 on thin cryostat sections of perfusion-fixed rat and mouse kidneys with peritubular inflammation, induced by thiazides and glomerulonephritis, respectively, in combination with ecto-5-nucleotidase (5NT), recognizing local cortical peritubular fibroblasts, with CD45, MHC class II, CD3, CD4 and Thy 1, recognizing mononuclear cells, with alpha smooth muscle actin (SMA), as marker for myofibroblasts, and vimentin for intracellular intermediate filaments in cells of mesenchymal origin. In the healthy interstitium of rodents the rare FSP1/S100A4+ cells consistently co-expressed CD45 or lymphocyte surface molecules. Around the injured distal tubules of rats treated for 3–4 days with thiazides, FSP1+/S100A4+, 5NT+, SMA+, CD45+ and MHC class II+ cells accumulated. FSP1+/S100A4+ cells consistently co-expressed CD45. In the inflamed regions, SMA was co-expressed by 5NT+ cells. In glomerulonephritic mice, FSP1+/S100A4+ cells co-expressed Thy 1, CD4 or CD3. Thus, in the inflamed interstitium around distal tubules of rats and of glomerulonephritic mice, the majority of FSP1+ cells express markers of mononuclear cells. Consequently, the usefulness of FSP1/S100A4 as a tool for detection of (myo)fibroblasts in inflamed kidneys and of EMT in vivo is put into question. In the given rat model the consistent co-expression of SMA and 5NT suggests that myofibroblasts originate from resident peritubular fibroblasts.Ivan Hegyi and Michel Le Hir contributed equally to the study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号