首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ATM (ataxia-telangiectasia-mutated) is a Ser/Thr kinase involved in cell cycle checkpoints and DNA repair. Human Rad9 (hRad9) is the homologue of Schizosaccharomyces pombe Rad9 protein that plays a critical role in cell cycle checkpoint control. To examine the potential signaling pathway linking ATM and hRad9, we investigated the modification of hRad9 in response to DNA damage. Here we show that hRad9 protein is constitutively phosphorylated in undamaged cells and undergoes hyperphosphorylation upon treatment with ionizing radiation (IR), ultraviolet light (UV), and hydroxyurea (HU). Interestingly, hyperphosphorylation of hRad9 induced by IR is dependent on ATM. Ser(272) of hRad9 is phosphorylated directly by ATM in vitro. Furthermore, hRad9 is phosphorylated on Ser(272) in response to IR in vivo, and this modification is delayed in ATM-deficient cells. Expression of hRad9 S272A mutant protein in human lung fibroblast VA13 cells disturbs IR-induced G(1)/S checkpoint activation and increased cellular sensitivity to IR. Together, our results suggest that the ATM-mediated phosphorylation of hRad9 is required for IR-induced checkpoint activation.  相似文献   

2.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

3.
The DNA damage checkpoint controls cell cycle arrest in response to DNA damage, and activation of this checkpoint is in turn cell cycle-regulated. Rad9, the ortholog of mammalian 53BP1, is essential for this checkpoint response and is phosphorylated by the cyclin-dependent kinase (CDK) in the yeast Saccharomyces cerevisiae. Previous studies suggested that the CDK consensus sites of Rad9 are important for its checkpoint activity. However, the precise CDK sites of Rad9 involved have not been determined. Here we show that CDK consensus sites of Rad9 function in parallel to its BRCT domain toward checkpoint activation, analogous to its fission yeast ortholog Crb2. Unlike Crb2, however, mutation of multiple rather than any individual CDK site of Rad9 is required to completely eliminate its checkpoint activity in vivo. Although Dpb11 interacts with CDK-phosphorylated Rad9, we provide evidence showing that elimination of this interaction does not affect DNA damage checkpoint activation in vivo, suggesting that additional pathway(s) exist. Taken together, these findings suggest that the regulation of Rad9 by CDK and the role of Dpb11 in DNA damage checkpoint activation are more complex than previously suggested. We propose that multiple phosphorylation of Rad9 by CDK may provide a more robust system to allow Rad9 to control cell cycle-dependent DNA damage checkpoint activation.  相似文献   

4.
Rad9 functions in the DNA-damage checkpoint pathway of Saccharomyces cerevisiae. In whole-cell extracts, Rad9 is found in large, soluble complexes, which have functions in amplifying the checkpoint signal. The two main soluble forms of Rad9 complexes that are found in cells exposed to DNA-damaging treatments were purified to homogeneity. Both of these Rad9 complexes contain the Ssa1 and/or Ssa2 chaperone proteins, suggesting a function for these proteins in checkpoint regula-tion. Consistent with this possibility, genetic experiments indicate redundant functions for SSA1 and SSA2 in survival, G2/M-checkpoint regulation, and phosphorylation of both Rad9 and Rad53 after irradiation with ultraviolet light. Ssa1 and Ssa2 can now be considered as novel checkpoint proteins that are likely to be required for remodelling Rad9 complexes during checkpoint-pathway activation.  相似文献   

5.
Histone lysine acetylation has emerged as a key regulator of genome organization. However, with a few exceptions, the contribution of each acetylated lysine to cellular functions is not well understood because of the limited specificity of most histone acetyltransferases and histone deacetylases. Here we show that the Mst2 complex in Schizosaccharomyces pombe is a highly specific H3 lysine 14 (H3K14) acetyltransferase that functions together with Gcn5 to regulate global levels of H3K14 acetylation (H3K14ac). By analyzing the effect of H3K14ac loss through both enzymatic inactivation and histone mutations, we found that H3K14ac is critical for DNA damage checkpoint activation by directly regulating the compaction of chromatin and by recruiting chromatin remodeling protein complex RSC.  相似文献   

6.
Foster ER  Downs JA 《The FEBS journal》2005,272(13):3231-3240
DNA repair must take place within the context of chromatin, and it is therefore not surprising that many aspects of both chromatin components and proteins that modify chromatin have been implicated in this process. One of the best-characterized chromatin modification events in DNA-damage responses is the phosphorylation of the SQ motif found in histone H2A or the H2AX histone variant in higher eukaryotes. This modification is an early response to the induction of DNA damage, and occurs in a wide range of eukaryotic organisms, suggesting an important conserved function. One function that histone modifications can have is to provide a unique binding site for interacting factors. Here, we review the proteins and protein complexes that have been identified as H2AS129ph (budding yeast) or H2AXS139ph (human) binding partners and discuss the implications of these interactions.  相似文献   

7.
Shinohara M  Sakai K  Ogawa T  Shinohara A 《Genetics》2003,164(3):855-865
We show here that deletion of the DNA damage checkpoint genes RAD17 and RAD24 in Saccharomyces cerevisiae delays repair of meiotic double-strand breaks (DSBs) and results in an altered ratio of crossover-to-noncrossover products. These mutations also decrease the colocalization of immunostaining foci of the RecA homologs Rad51 and Dmc1 and cause a delay in the disappearance of Rad51 foci, but not of Dmc1. These observations imply that RAD17 and RAD24 promote efficient repair of meiotic DSBs by facilitating proper assembly of the meiotic recombination complex containing Rad51. Consistent with this proposal, extra copies of RAD51 and RAD54 substantially suppress not only the spore inviability of the rad24 mutant, but also the gamma-ray sensitivity of the mutant. Unexpectedly, the entry into meiosis I (metaphase I) is delayed in the checkpoint single mutants compared to wild type. The control of the cell cycle in response to meiotic DSBs is also discussed.  相似文献   

8.
9.
Pinto I  Winston F 《The EMBO journal》2000,19(7):1598-1612
Histones are structural and functional components of the eukaryotic chromosome, and their function is essential for normal cell cycle progression. In this work, we describe the characterization of two Saccharomyces cerevisiae cold-sensitive histone H2A mutants. Both mutants contain single amino acid replacements of residues predicted to be on the surface of the nucleosome and in close contact with DNA. We show that these H2A mutations cause an increase-in-ploidy phenotype, an increased rate of chromosome loss, and a defect in traversing the G(2)-M phase of the cell cycle. Moreover, these H2A mutations show genetic interactions with mutations in genes encoding kinetochore components. Finally, chromatin analysis of these H2A mutants has revealed an altered centromeric chromatin structure. Taken together, these results strongly suggest that histone H2A is required for proper centromere-kinetochore function during chromosome segregation.  相似文献   

10.
The incorporation of histone variants is one mechanism used by the eukaryotic cell to alter the generally repressive chromatin template. However, the exact molecular mechanisms that direct this incorporation are not well understood. The SWR1 chromatin remodeling complex that binds to and directs incorporation of histone variant H2A.Z into chromatin has been characterized, but significantly less information is available concerning the requirements on the H2A.Z target molecule. We performed an unbiased mutagenic screen designed to elucidate the function of H2A.Z in Saccharomyces cerevisiae. The screen identified residues within the conserved acidic patch of H2A.Z as being important for the function of the variant. We characterized single point mutations in the patch that are phenotypically sensitive to a variety of growth conditions and are expressed at lower protein levels, but are functionally defective (htz1-D99A, htz1-D99K, and htz1-E101K). The mutants were significantly less detectable by chromatin immunoprecipitation at PHO5, a gene previously described to be enriched for H2A.Z. These results identify acidic patch residues of H2A.Z that are critical for mediating deposition and function in chromatin, and represent potential candidates for the interaction of H2A.Z with its deposition and/or targeting machinery.  相似文献   

11.
We tested the role of histone deacetylases (HDACs) in the homologous recombination process. A tissue-culture based homology-directed repair assay was used in which repair of a double-stranded break by homologous recombination results in gene conversion of an inactive GFP allele to an active GFP gene. Our rationale was that hyperacetylation caused by HDAC inhibitor treatment would increase chromatin accessibility to repair factors, thereby increasing homologous recombination. Contrary to expectation, treatment of cells with the inhibitors significantly reduced homologous recombination activity. Using RNA interference to deplete each HDAC, we found that depletion of either HDAC9 or HDAC10 specifically inhibited homologous recombination. By assaying for sensitivity of cells to the interstrand cross-linker mitomycin C, we found that treatment of cells with HDAC inhibitors or depletion of HDAC9 or HDAC10 resulted in increased sensitivity to mitomycin C. Our data reveal an unanticipated function of HDAC9 and HDAC10 in the homologous recombination process.  相似文献   

12.
Mammalian ATR and ATM checkpoint kinases modulate chromatin structures near DNA breaks by phosphorylating a serine residue in the carboxy-terminal tail SQE motif of histone H2AX. Histone H2A is similarly regulated in Saccharomyces cerevisiae. The phosphorylated forms of H2AX and H2A, known as gamma-H2AX and gamma-H2A, are thought to be important for DNA repair, although their evolutionarily conserved roles are unknown. Here, we investigate gamma-H2A in the fission yeast Schizosaccharomyces pombe. We show that formation of gamma-H2A redundantly requires the ATR/ATM-related kinases Rad3 and Tel1. Mutation of the SQE motif to AQE (H2A-AQE) in the two histone H2A genes caused sensitivity to a wide range of genotoxic agents, increased spontaneous DNA damage, and impaired checkpoint maintenance. The H2A-AQE mutations displayed a striking synergistic interaction with rad22Delta (Rad52 homolog) in ionizing radiation (IR) survival. These phenotypes correlated with defective phosphorylation of the checkpoint proteins Crb2 and Chk1 and a failure to recruit large amounts of Crb2 to damaged DNA. Surprisingly, the H2A-AQE mutations substantially suppressed the IR hypersensitivity of crb2Delta cells by a mechanism that required the RecQ-like DNA helicase Rqh1. We propose that gamma-H2A modulates checkpoint and DNA repair through large-scale recruitment of Crb2 to damaged DNA. This function correlates with evidence that gamma-H2AX regulates recruitment of several BRCA1 carboxyl terminus domain-containing proteins (NBS1, 53BP1, MDC1/NFBD1, and BRCA1) in mammals.  相似文献   

13.
Li F  Huarte M  Zaratiegui M  Vaughn MW  Shi Y  Martienssen R  Cande WZ 《Cell》2008,135(2):272-283
In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.  相似文献   

14.
The interaction between the 911 complex, via Rad9A, and Claspin is required for activation of the Chk1-mediated checkpoint response, along with ATR, TopBP1, and the 911 clamp loader complex Rad17/RFC. Despite the importance of the Rad9A-Claspin interaction in the cell cycle, this interaction has yet to be characterized. In this work we show this interaction persists in a variety of different conditions. During the course of this study we also determined the nuclear localization of Rad9A affected the localization of the Claspin protein, leading us to the conclusion that Rad9A is able to affect Claspin cellular localization. This was verified experimentally using a Rad9A-null cell line and reconstitution of WT Rad9A. We also show that in mES cells the Rad9A paralog, Rad9B, is also capable of affecting Claspin localization. Together, these data suggest that Rad9 plays a role in locating Claspin to sites of DNA damage, facilitating its role during the Chk1-mediated checkpoint response. Since disruption of both Rad9A and Claspin has been shown to abolish Chk1 activation, we postulate that Rad9A-mediated Claspin localization is a vital step during checkpoint activation.  相似文献   

15.
16.
We screened radiation-sensitive yeast mutants for DNA damage checkpoint defects and identified Dot1, the conserved histone H3 Lys 79 methyltransferase. DOT1 deletion mutants (dot1Delta) are G1 and intra-S phase checkpoint defective after ionizing radiation but remain competent for G2/M arrest. Mutations that affect Dot1 function such as Rad6-Bre1/Paf1 pathway gene deletions or mutation of H2B Lys 123 or H3 Lys 79 share dot1Delta checkpoint defects. Whereas dot1Delta alone confers minimal DNA damage sensitivity, combining dot1Delta with histone methyltransferase mutations set1Delta and set2Delta markedly enhances lethality. Interestingly, set1Delta and set2Delta mutants remain G1 checkpoint competent, but set1Delta displays a mild S phase checkpoint defect. In human cells, H3 Lys 79 methylation by hDOT1L likely mediates recruitment of the signaling protein 53BP1 via its paired tudor domains to double-strand breaks (DSBs). Consistent with this paradigm, loss of Dot1 prevents activation of the yeast 53BP1 ortholog Rad9 or Chk2 homolog Rad53 and decreases binding of Rad9 to DSBs after DNA damage. Mutation of Rad9 to alter tudor domain binding to methylated Lys 79 phenocopies the dot1Delta checkpoint defect and blocks Rad53 phosphorylation. These results indicate a key role for chromatin and methylation of histone H3 Lys 79 in yeast DNA damage signaling.  相似文献   

17.
18.
19.
He W  Ma X  Yang X  Zhao Y  Qiu J  Hang H 《Nucleic acids research》2011,39(11):4719-4727
The genome stability is maintained by coordinated action of DNA repairs and checkpoints, which delay progression through the cell cycle in response to DNA damage. Rad9 is conserved from yeast to human and functions in cell cycle checkpoint controls. Here, a regulatory mechanism for Rad9 function is reported. In this study Rad9 has been found to interact with and be methylated by protein arginine methyltransferase 5 (PRMT5). Arginine methylation of Rad9 plays a critical role in S/M and G2/M cell cycle checkpoints. The activation of the Rad9 downstream checkpoint effector Chk1 is impaired in cells only expressing a mutant Rad9 that cannot be methylated. Additionally, Rad9 methylation is also required for cellular resistance to DNA damaging stresses. In summary, we uncovered that arginine methylation is important for regulation of Rad9 function, and thus is a major element for maintaining genome integrity.  相似文献   

20.
The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys(79) methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号