首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under conditions of oxidative stress it is well known that the bioavailability of nitric oxide (NO) is known to be significantly reduced. This process is in part due to the combination of NO with superoxide radicals to form peroxynitrite (ONOO?). While this process inactivates NO per se, it is not certain to which extent this process may also further impair ongoing NO production. Given the pivotal role of arginine availability for NO synthesis we determined the impact of ONOO? on endothelial arginine transport and intracellular arginine metabolism. Peroxynitrite reduced endothelial [3H]-l-arginine transport and increased the rate of arginine efflux in a concentration-dependent manner (both p < 0.05). In conjunction, exposure to ONOO? significantly reduced the intracellular concentration of l-arginine, NG-hydroxy-l-arginine (an intermediate of NO biosynthesis) and citrulline by 46%, 45% and 60% respectively (all p < 0.05), while asymmetric dimethyl arginine (ADMA) levels rose by 180% (p < 0.05). ONOO? exposure did not alter the cellular distribution of the principal l-arginine transporter, CAT1, rather the effect on CAT1 activity appeared to be mediated by protein nitrosation. Conclusion Peroxynitrite negatively influences NO production by combined effects on arginine uptake and efflux, most likely due to a nitrosative action of ONOO? on CAT-1.  相似文献   

2.
The competition for L-arginine between the inducible nitric oxide synthase and arginase contributes to the outcome of several parasitic and bacterial infections. The acquisition of L-arginine, however, is important not only for the host cells but also for the intracellular pathogen. In this study we observe that strain AS-1, the Mycobacterium bovis BCG strain lacking the Rv0522 gene, which encodes an arginine permease, perturbs l-arginine metabolism in J774.1 murine macrophages. Infection with AS-1, but not with wild-type BCG, induced l-arginine uptake in J774.1 cells. This increase in L-arginine uptake was independent of activation with gamma interferon plus lipopolysaccharide and correlated with increased expression of the MCAT1 and MCAT2 cationic amino acid transport genes. AS-1 infection also enhanced arginase activity in resting J774.1 cells. Survival studies revealed that AS-1 survived better than BCG within resting J774.1 cells. Intracellular growth of AS-1 was further enhanced by inhibiting arginase and ornithine decarboxylase activities in J774.1 cells using L-norvaline and difluoromethylornithine treatment, respectively. These results suggest that the arginine-related activities of J774.1 macrophages are affected by the arginine transport capacity of the infecting BCG strain. The loss of Rv0522 gene-encoded arginine transport may have induced other cationic amino acid transport systems during intracellular growth of AS-1, allowing better survival within resting macrophages.  相似文献   

3.
Arginine and ornithine are known to be important for various biological processes in the testis, but the delivery of extracellular cationic amino acids to the seminiferous tubule cells remains poorly understood. We investigated the activity and expression of cationic amino acid transporters in isolated rat Sertoli cells, peritubular cells, pachytene spermatocytes, and early spermatids. We assessed the l-arginine uptake kinetics, Na(+) dependence of transport, profiles of cis inhibition of uptake by cationic and neutral amino acids, and sensitivity to trans stimulation of cationic amino acid transporters, and studied the expression of the genes encoding them by RT-PCR. Our data suggest that l-arginine is taken up by Sertoli cells and peritubular cells, principally via system y(+)L (SLC3A2/SLC7A6) and system y(+) (SLC7A1 and SLC7A2), with system B(0+) making a minor contribution. By contrast, system B(0+), associated with system y(+)L (SLC3A2/SLC7A7 and SLC7A6), made a major contribution to the transport of cationic amino acids in pachytene spermatocytes and early spermatids. Sertoli cells had higher rates of l-arginine transport than the other seminiferous tubule cells. This high efficiency of arginine transport in Sertoli cells and the properties of the y(+)L system predominating in these cells strongly suggest that Sertoli cells play a key role in supplying germ cells with l-arginine and other cationic amino acids. Furthermore, whereas cytokines induce nitric oxide (NO) production in peritubular and Sertoli cells, little or no upregulation of arginine transport by cytokines was observed in these cells. Thus, NO synthesis does not depend on the stimulation of arginine transport in these somatic tubular cells.  相似文献   

4.
The aberrant production of nitric oxide (NO) contributes to the pathogenesis of diseases as diverse as cancer and arthritis. Sustained NO production via the inducible enzyme, nitric-oxide synthase 2 (NOS2), requires extracellular arginine uptake. Three closely related cationic amino acid transporter genes (Cat1-3) encode the transporters that mediate most arginine uptake in mammalian cells. Because CAT2 is induced coordinately with NOS2 in numerous cell types, we investigated a possible role for CAT2-mediated arginine transport in regulating NO production. The complexity of arginine transport systems and their biochemically similar transport properties called for a genetic approach to determine the role of CAT2. CAT2-deficient mice were generated and found to be healthy and fertile in contrast to Cat1(-/-) animals. Analysis of cytokine-activated macrophages from Cat2(-/-) mice revealed a 92% reduction in NO production and a 95% reduction in l-Arg uptake. The reduction in NO production was not due to differences in NOS2 protein expression, NOS2 activity, or intracellular l-arginine content. In conclusion, our results show that sustained abundant NO synthesis by macrophages requires arginine transport via the CAT2 transporter.  相似文献   

5.
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the beta-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Galpha(i) ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-alpha but did not affect the activities of PKC-epsilon and PKC-zeta in PAEC. An activator of PKC-alpha, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-alpha (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-alpha. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[(3)H]citrulline production from extracellular l-[(3)H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.  相似文献   

6.
A 37-year old male patient presented with frequent angina attacks (up to 40/day) largely resistant to classical vasodilator therapy. The patient showed severe coronary and peripheral endothelial dysfunction, increased platelet aggregation and increased platelet-derived superoxide production. The endothelial nitric oxide synthase (eNOS)-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) reduced superoxide formation in platelets identifying "uncoupled" eNOS as a superoxide source. Oral L-arginine normalized coronary and peripheral endothelial dysfunction and reduced platelet aggregation and eNOS-derived superoxide production. Plasma concentrations of the endogenous NOS inhibitor asymmetric dimethyl-L-arginine (ADMA), representing an independent risk factor for cardiovascular disease, were normal in the patient. However, immediately after oral administration of cationic amino acid (CAA), plasma ADMA levels rose markedly, demonstrating increased ADMA efflux from intracellular stores. ADMA efflux from mononuclear cells of the patient was accelerated by CAA, but not neutral amino acids (NAA) demonstrating impairment of y(+)LAT (whose expression was found reduced in these cells). These data suggest that impairment of y(+)LAT may cause intracellular (endothelial) ADMA accumulation leading to systemic endothelial dysfunction. This may represent a novel mechanism underlying vasospastic angina and vascular dysfunction in general. Moreover, these new findings contribute to the understanding of the l-arginine paradox, the improvement of eNOS activity by oral L-arginine despite sufficient cellular l-arginine levels to ensure proper function of this enzyme.  相似文献   

7.
8.
Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, is thought to be a key factor contributing to endothelial dysfunction. Tea catechins can cause an endothelium-dependent vasorelaxation. The present study examined the effect of epigallocatechin gallate (EGCG), the major component of tea catechins, on endothelial dysfunction induced by native low density lipoprotein (LDL) in rats and oxidized LDL (ox-LDL) in cultured endothelial cells, and whether the protective effect of EGCG is related to reduction of ADMA level. A single injection of LDL (4 mg x kg(-1), i.v.) markedly reduced endothelium-dependent relaxation and the serum nitrite/nitrate (NO) level, and increased serum concentrations of ADMA, malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-alpha). EGCG (10 or 50 mg x kg(-1), i.p.) significantly attenuated the inhibition of vasodilator response to acetylcholine and the decreased serum nitrite/nitrate level, and reduced the elevated levels of ADMA, MDA, and TNF-alpha. Exposure of endothelial cells to ox-LDL (100 microg x mL(-1)) for 24 h markedly increased the medium levels of lactate dehydrogenase (LDH), ADMA, TNF-alpha, and MDA, and decreased the level of nitrite/nitrate in the medium and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in the endothelial cells. EGCG (10 and 100 microg x mL(-1)) significantly decreased the levels of LDH, ADMA, TNF-alpha, and MDA, and increased the level of nitrite/nitrate and the activity of DDAH. These results suggest that EGCG protects endothelial dysfunction induced by native LDL in vivo or by ox-LDL in endothelial cells, and the protective effect of EGCG on the endothelium is related to decrease in ADMA level via increasing of DDAH activity.  相似文献   

9.
In cultured endothelial cells, 70-95% of extracellular l-arginine uptake has been attributed to the cationic amino acid transporter-1 protein (CAT-1). We tested the hypothesis that extracellular l-arginine entry into endothelial cells via CAT-1 plays a crucial role in endothelial nitric oxide (NO) production during in vivo conditions. Using l-lysine, the preferred amino acid transported by CAT-1, we competitively inhibited extracellular l-arginine transport into endothelial cells during conditions of NaCl hyperosmolarity, low oxygen, and flow increase. Our prior studies indicate that each of these perturbations causes NO-dependent vasodilation. The perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature. Suppression of extracellular l-arginine transport significantly and strongly inhibited increases in vascular [NO] and intestinal blood flow during NaCl hyperosmolarity, lowered oxygen tension, and increased flow. These results suggest that l-arginine from the extracellular space is accumulated by CAT-1. When CAT-1-mediated transport of extracellular l-arginine into endothelial cells was suppressed, the endothelial cell NO response to a wide range of physiological stimuli was strongly depressed.  相似文献   

10.
We have recently shown that inhibition of nitric oxide (NO) synthesis by asymmetrical dimethylarginine (ADMA) accelerated endothelial cell (EC) senescence which was prevented by coincubation with l-arginine; however the effect of long-term treatment of l-arginine alone on senescence of ECs have not been investigated. Human ECs were cultured in medium containing different concentrations of l-arginine until senescence. l-Arginine paradoxically accelerated senescence indicated by inhibiting telomerase activity. Moreover, l-arginine decreased NO metabolites, increased peroxynitrite, and 8-iso-prostaglandin F formation. In old cells, the mRNA expression of human amino acid transporter (hCAT)2B, the activity and protein expression of arginase II were upregulated indicated by enhanced urea, l-ornithine, and l-arginine consumption. Inhibition of arginase activity, or transfection with arginase II siRNA prevented l-arginine-accelerated senescence. The most possible explanation for the paradoxical acceleration of senescence by l-arginine so far may be the translational and posttranslational activation of arginase II.  相似文献   

11.
Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the possibility of using these molecules as a route of entry of therapeutic drugs.  相似文献   

12.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.  相似文献   

13.
Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.  相似文献   

14.
In an attempt to simultaneously detect molecules generated through the metabolism of l-arginine, a high-performance liquid chromatography method with on-line time-controlled preinjection reaction of ortho-phthaldialdehyde derivatization was developed. Plasma concentrations of citrulline, N(G)-hydroxy-l-arginine, N(G)-monomethyl-l-arginine, asymmetric N (G), N (G)-dimethyl-l-arginine, symmetric N (G), N (G')-dimethyl-l-arginine, ornithine, and agmatine were analyzed within 35min, using only 20microl of sample, pretreated by a simple cold ethanol cleanup procedure. Plasma samples of 35 healthy human volunteers were analyzed and results were comparable to other published data. All detection parameters of the method demonstrate that it is a reliable and efficient means for the comprehensive determination of arginine and its metabolites, making this approach suitable for routine clinical applications.  相似文献   

15.
The cells of the marine bacterium Ant-300 were found to take up arginine when this substrate was at low concentrations. The cells possessed an uptake system(s) that specifically transported l-arginine. The kinetic parameters for uptake appeared to differ when the cells were exposed to nanomolar and micromolar concentrations of the amino acid. Uptake over this concentration range functioned in the absence of an exogenous energy source, even after the cells had been preincubated in unsupplemented artificial seawater. Respiratory activity appeared to be a more important driving force for arginine uptake than adenosine 5'-triphosphate hydrolysis. The cells also exhibited chemotaxis toward l-arginine. The minimum arginine concentration needed to elicit a chemotactic response was between 10 and 10 M. It is proposed that the capture of arginine by cells of Ant-300 in nutrient-depleted waters, which are typical of the open ocean, proceeds via high-affinity active transport, whereas in substrate-enriched seawater, capture involves chemotaxis and an active transport mechanism with reduced affinity for the substrate.  相似文献   

16.
We investigated here the effect of l-arginine on asymmetric dimethylarginine (ADMA) or homocysteine-accelerated endothelial aging. Endothelial cells were cultured in medium containing 70micromol/L arginine until fourteenth passage. ADMA, dl-homocysteine, and l-arginine were replaced every 48h starting at the fourth passage. ADMA or homocysteine inhibited significantly the population doublings (PD) and accelerated the process of aging. Co-incubation with l-arginine enhanced PD, inhibited senescence associated beta-galactosidase activity, and increased telomerase activity. This effect was associated with an increase in NO synthesis and NO synthase protein expression. Furthermore, l-arginine-induced NO formation was accompanied by a reduction in oxidative stress and an increase in protein expression and enzyme activity of heme oxygenase (HO)-1. The NO synthase inhibitor l-NAME completely abolished the effect of l-arginine on ADMA or homocysteine-accelerated aging. These findings demonstrate that l-arginine prevents the onset of endothelial aging in ADMA or homocysteine-treated cells by increasing NO formation and consequently the induction of HO-1. This might provide a new strategy to delay ADMA or homocysteine-accelerated aging.  相似文献   

17.
A model system is presented using human umbilical vein endothelial cells (HUVECs) to investigate the role of homocysteine (Hcy) in atherosclerosis. HUVECs are shown to export Hcy at a rate determined by the flux through the methionine/Hcy pathway. Additional methionine increases intracellular methionine, decreases intracellular folate, and increases Hcy export, whereas additional folate inhibits export. An inverse relationship exists between intracellular folate and Hcy export. Hcy export may be regulated by intracellular S-adenosyl methionine rather than by Hcy. Human LDLs exposed to HUVECs exporting Hcy undergo time-related lipid oxidation, a process inhibited by the thiol trap dithionitrobenzoate. This is likely to be related to the generation of hydroxyl radicals, which we show are associated with Hcy export. Although Hcy is the major oxidant, cysteine also contributes, as shown by the effect of glutamate. Finally, the LDL oxidized in this system showed a time-dependent increase in uptake by human macrophages, implying an upregulation of the scavenger receptor. These results suggest that continuous export of Hcy from endothelial cells contributes to the generation of extracellular hydroxyl radicals, with associated oxidative modification of LDL and incorporation into macrophages, a key step in atherosclerosis. Factors that regulate intracellular Hcy metabolism modulate these effects.  相似文献   

18.
Previous work demonstrated that l-arginine, the substrate for nitric oxide (NO) synthase, is carried into inner medullary collecting duct (IMCD) cells via system y+, that the major system y+ gene product in IMCD is the cationic amino acid transporter 1 (CAT1), and that blockade of l-arginine uptake in the renal medulla decreases NO and leads to systemic hypertension. The present study determined the influence of dietary sodium intake on l-arginine uptake in IMCD, on CAT1 immunoreactive protein in the renal medulla, and on the hypertensive response to blockade of l-arginine uptake in the renal medulla. Transport studies in bulk-isolated IMCD demonstrated that l-arginine uptake by IMCD was significantly greater (663 +/- 100 pmol x mg(-1) x min(-1), n = 6) in rats exposed to a low-sodium diet (0.4% NaCl) compared with rats on a normal (1% NaCl, 519 +/- 78 pmol x mg(-1) x min(-1), n = 6) or high-sodium diet (4.0% NaCl, 302 +/- 27 pmol x mg(-1) x min(-1), n = 6). Immunoblotting experiments demonstrated that CAT1 immunoreactive protein was significantly decreased by approximately 30% in rats maintained on a high-NaCl diet (n = 5) compared with rats on a low-NaCl diet (n = 5). In contrast to the l-arginine transport and immunoblotting data, in vivo blockade of l-arginine uptake led to hypertension of equal magnitude in rats maintained on a low- or high-NaCl diet. These results indicate that sodium loading leads to a decrease in immunoreactive CAT1 protein in the rat renal medulla, resulting in decreased l-arginine uptake capacity. The decrease in l-arginine uptake capacity, however, does not alter the blood pressure response to l-arginine uptake inhibition in the renal medulla.  相似文献   

19.
Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high‐affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes.  相似文献   

20.
Lectin-like, oxidized low-density lipoprotein (LDL) receptor 1, LOX-1, is the major receptor for oxidized LDL (OxLDL) in endothelial cells. We have determined the crystal structure of the ligand binding domain of LOX-1, with a short stalk region connecting the domain to the membrane-spanning region, as a homodimer linked by an interchain disulfide bond. In vivo assays with LOX-1 mutants revealed that the "basic spine," consisting of linearly aligned arginine residues spanning over the dimer surface, is responsible for ligand binding. Single amino acid substitution in the dimer interface caused a severe reduction in LOX-1 binding activity, suggesting that the correct dimer arrangement is crucial for binding to OxLDL. Based on the LDL model structure, possible binding modes of LOX-1 to OxLDL are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号