首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sexuality of homosporous fern gametophytes is usually determined by antheridiogen, a pheromone that promotes maleness. In this work the effect of photomorphogenically active light on antheridiogen-induced male development was examined for gametophytes of Ceratopteris richardii. Although blue light did not affect sensitivity to Ceratopteris antheridiogen (ACe) in wild-type gametophytes, it was found that the gametophytes of the her1 mutant, which are insensitive to ACe, developed into males when grown under blue light in the presence of ACe. Thus, we conclude that another ACe-signal transduction pathway activated by blue light exists latently in the gametophytes of C. richardii. Red light, on the other hand, suppressed male development. Because simultaneous red and blue light-irradiation did not promote male development in the her1 gametophytes, the action of red light seems to dominate that of blue light. The results of experiments with a photomorphogenic mutant also suggested that phytochrome may be involved in the action of red light.  相似文献   

2.
对狭眼凤尾蕨(Pteris biaurita)配子体发育特征及其外源成精子囊素对模式植物水蕨(Ceratopteris thalictroides)在黑暗和光照条件下孢子萌发和配子体发育的影响进行了研究。结果表明:(1)狭眼凤尾蕨孢子深褐色,三裂缝,孢子萌发为书带蕨型,原叶体发育为水蕨型,无毛状体产生;培养发现,其配子体能产生精子器,但不产生颈卵器,当接种密度适中时,可进行无配子生殖。(2)在光照和黑暗条件下狭眼凤尾蕨成精子囊素有促进和抑制水蕨孢子萌发的作用,但效果均不显著。(3)在光照条件下,狭眼凤尾蕨成精子囊素可以延迟水蕨心脏形配子体分生组织缺刻的形成,但对其配子体形态和性别分化无明显影响;而在黑暗条件下狭眼凤尾蕨成精囊素对水蕨长条形配子体的形态发育具有一定影响,与对照组相比其顶端分生组织发达,整体呈长楔形,对性别分化影响不显著。可见,狭眼凤尾蕨和水蕨不具有同种成精子囊素系统。  相似文献   

3.
The earliest visible responses of spinach plants (Spinacia oleracea L., cv. Savoy Hybrid 612) transferred from short to long days (8 hours of high intensity light supplemented with 16 hours of low intensity illumination from incandescent lamps) were upright leaf orientation and increased elongation of the petioles. The effect of long days on growth rate was direct; i.e., there was no after-effect if the plants were transferred to short days. Gibberellin A3 applied to plants under short days had an effect similar to that of long days, whereas application of the growth retardant AMO-1618 [2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidinel-carboxylate] under long days caused a growth habit typical of short-day conditions. Gibberellin A3 caused more stem growth in plants under long days in which the endogenous gibberellin content had been reduced by AMO-1618 than in plants under short days not treated with the growth retardant.  相似文献   

4.
Spores of Anemia mexicana Klotzsch and Anemia phyllitidis (L.) Swartz were tested comparatively to investigate the effects of various treatments on spore germination and early gametophyte development in light and darkness. The optimum pH for induction of spore germination is approximately 6. Both species have a minimum 8 hour light insensitive preinduction phase for spore germination. An additional 8 to 12 hours of light are needed to induce 50% germination in A. phyllitidis while at least 24 hours of light are needed for A. mexicana spores. A. phyllitidis has greater sensitivity to the four gibberellic acids tested (GA3, GA4, GA7, and GA13) than A. mexicana for induction of spore germination in darkness. In both species the greatest response was observed with GA4 and GA7. GA13 was clearly the least effective. Gametophytes of each species are 100 times more sensitive to their own antheridiogen than to the antheridiogen of the other species. AMO-1618 (1 millimolar), fenarimol (1 mm), and ancymidol (0.1 mm) had essentially no effect on light-induced germination. The latter two did, however, inhibit gametophyte development.  相似文献   

5.
WARNE, T. R., HICKOK, L. G. & SCOTT, R. S., 1988. Characterization and genetic analysis of antheridiogen-insensitive mutants in the fern Ceratopteris . The pheromone antheridiogen mediates the differentiation of male gametophytes in the fern Ceratopteris . Mutants insensitive to antheridiogen were isolated using an in vitro selection procedure. Antheridiogen-insensitive mutants exhibited partial or complete insensitivity to antheridiogen, but were normal in all other respects. Two mutants were completely insensitive to antheridiogen, whereas, another mutant was insensitive to supplemented antheridiogen, but produced male gametophytes in multispore cultures. Genetic analysis suggested a single gene basis for each mutant.  相似文献   

6.
Experiments were carried out to explore the involvement of the plant hormone gibberellin (GA) in the light-induced germination of lettuce seeds. Three growth retardants known to be inhibitors of GA biosynthesis were tested for their effect on red-light-induced germination. Chlormequat chloride (CCC) and AMO-1618 had no effect, but ancymidol was strongly inhibitory. Moreover, the inhibition caused by ancymidol was completely overcome by GA3. CCC and AMO-1618 inhibit the formation ofent-kaurene, while ancymidol blocks the oxidation ofent-kaurene toent-kaurenoic acid. Ancymidol also was found to inhibit GA-induced dark germination of lettuce seeds, and this inhibition was partially reversed by higher levels of GA. Therefore, the results suggest two possibilities for the relationship between phytochrome and GA in this system: first, the rate-limiting step in the germination of light-sensitive lettuce seeds, that which is regulated by phytochrome, is the oxidation ofent-kaurene toent-kaurenoic acid. Alternatively, red-light treatment may result in the release of active GAlike substances which, in turn, induce germination. In either case the results presented here support the view that phytochrome exerts its effect on lettuce seed germination by means of GA rather than via an independent pathway.  相似文献   

7.
Three plant growth regulators, paclobutrazol, ancymidol, and decylimidazole, which are putative inhibitors of gibberellin (GA) biosynthesis, were studied to determine their effect on abscisic acid (ABA) biosynthesis in the fungus Cercospora rosicola. All three compounds inhibited ABA biosynthesis, and paclobutrazol was the most effective, inhibiting ABA 33% at 0.1 micromolar concentrations. In studies using (E,E,)-[1-14C] farnesyl pyrophosphate, it was shown that ancymidol blocked biosynthesis prior to farnesyl pyrophosphate (FPP), whereas paclobutrazol and decylimidazole acted after FPP. The three inhibitors did not prevent 4′-oxidation of (2Z,4E)-α-ionylideneacetic acid. C. rosiciola metabolized ancymidol by demethylation to α-cyclopropyl-α-(p-hydroxyphenyl)-5-pyrimidine methyl alcohol. Paclobutrazol was not metabolized by the fungus. Information that these plant growth regulators inhibit ABA as well as GA biosynthesis should prove useful in determining the full range of action of these compounds.  相似文献   

8.
Higher concentrations of growth retardants, ancymidol and AMO-1718,were required to suppress root growth than hypocotyl growthin lettuce seedlings. Gibberellic acid (GA3) counteracted theeffect of these growth retardants, but complete recovery ofroot growth was obtained only in a narrow range of growth retardantconcentrations. A much lower concentration of GA3 (1 nM) wasneeded for recovery of root growth from ancymidol suppressionthan that for hypocotyl growth (100 (µM). GA3 synergisticallypromoted root growth at moderate concentrations (10–100nM) with either ancymidol or AMO-1618. Ancymidol not only suppressed root elongation but also causedthickening of the elongation zone of the root, actions whichGA3 completely canceled. Microscopic observation showed theseeffects were mainly due to the lateral expansion and shorteningof epidermal and cortical cells. Growth kinetics of roots recorded by a computer-regulated rhizometerindicated that the lag times of both growth suppression by ancymidoland growth recovery by GA3 were about 4 h. -Naphthaleneacetic acid (NAA) did not counteract ancymidol suppressionof root and hypocotyl growth. These results support the concept that gibberellins play anindispensable role in root elongation at an extremely lowerconcentration than in hypocotyl elongation. (Received January 7, 1987; Accepted May 14, 1987)  相似文献   

9.
Protein kinase CK2 is a serine/threonine kinase known to phosphorylate numerous substrates. CK2 is implicated in several physiologic and pathologic processes, particularly in cancer biology. CK2 is comprised of several subunits, including CK2α, CK2α′ and CK2β. Inactivation of CK2α′ leads to chromatin degeneration of germ cells, resulting in male sterility. To identify additional targets of CK2α′ in testes and to determine the role of CK2α′ in germ cell nuclear integrity, GST pull-down and protein–protein interaction assays were conducted. A novel testis-specific gene, CKT2 (CK2 Target protein 2), was found whose product interacts with and is phosphorylated by CK2 in vitro and in vivo. CKT2 is a 30.2 kDa protein with one coiled-coil domain and six putative phosphorylation sites. High expression of CKT2 correlated with chromatin condensation of spermatids in murine testes. Findings reported herein demonstrate that CKT2 is a target protein of native CK2α′ in testes and suggest that CKT2 plays a role in chromatin regulation of male germ cells.  相似文献   

10.
Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α) (without secretory signal sequence) gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT). Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9%) became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR) and the 2′-5′-oligoadenylate synthetase gene (2′-5′ OAS), which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2′-5′ OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.  相似文献   

11.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

12.
研究了同形鳞毛蕨成精子囊素对该种和水蕨孢子萌发和配子体发育的影响,结果表明:同形鳞毛蕨配子体能产生成精子囊素,该成精子囊素能抑制同种孢子的萌发,抑制作用随配子体成熟度的增加而增强;同形鳞毛蕨成精子囊素还可促进同种孢子发育为雄配子体;光照条件下,同形鳞毛蕨成精子囊素对水蕨孢子萌发和配子体发育影响不大,黑暗条件下,同形鳞毛蕨成精子囊素能显著的促使水蕨孢子提早萌发,但都不影响其孢子最终萌发率和配子体的性别分化,表明同形鳞毛蕨和水蕨的成精子囊素不属于同一系统。  相似文献   

13.
Three plant-growth retardants 2′-isopropy1-4′-(trimethylammonium chloride)-5-methylphenylpiperidine carboxylate (Amo 1618), β-chloroethyltrimethylammonium chloride, and tributyl-2, 4-dichlorobenzylphosphonium chloride were tested for their effects on sterol production in, and growth of tobacco (Nicotiana tabacum) seedlings. As the concentration of each retardant increased, there was an increased inhibition of the incorporation of dl-2-14C-mevalonic acid into sterol (particularly desmethylsterol) fractions and an increased retardation of stem growth. Growth retardation was observed with both single and repeated retardant treatments, and with Amo 1618, in particular, a close quantitative relationship between inhibition of sterol biosynthesis and stem growth was obtained. Gibberellic acid completely overcame retardant effects and application of sterols also restored normal growth. It is concluded that the concept of causality in the relationship between growth retardation and gibberellin biosynthesis is probably premature, since growth retardants have a more general inhibitory action on isoprenoid biosynthesis in plants.  相似文献   

14.
Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into αβ, α′β′, and γ neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)–αβ neurons and the octopaminergic anterior paired lateral (APL)–α′β′ neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of αβ neurons and that of α′β′ neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octβ2R in αβ and α′β′ neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from α′β′ neuron output is independent of radish. We identified MBON-β2β′2a and MBON-β′2mp as the MB output neurons downstream of αβ and α′β′ neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that α′β′ neurons could be functionally subdivided into α′β′m neurons required for ARM retrieval, and α′β′ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval.  相似文献   

15.
4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure.  相似文献   

16.
Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors.However,cryptic plant species are widespread,particularly in Ceratopteris(Pteridaceae).Identifying Ceratopteris cryptic species with different polyploidy levels is a challenge because Ceratopteris spp.exhibit high degrees of phenotypic plasticity.Here,two new cryptic species of Ceratopteris,Ceratopteris chunii and Ceratopteris chingii,are described and illustrated.Ph...  相似文献   

17.
Chlorophyll loss in the leaves of cut flowering branches of Alstroemeria pelegrina L. cv. Stajello, placed in water in darkness at 20°, was inhibited by irradiation with red light and by the inclusion of gibberellic acid (GA3) in the water. The effects of red light were abolished when it was followed by far-red light. Effects of GA3 and red light were additive over a range of GA3 concentrations (0. 01–1 μ M ). Chlorophyll breakdown was increased by the inclusion of AMO-1618, ancymidol, or tetcyclasis in the water. The effect of these inhibitors of gibberellin synthesis was fully reversed by GA3. The inhibition of chlorophyll breakdown by red light was absent when AMO-1618, ancymidol or tetcyclasis were included in the water. The results indicate that leaf yellowing is controlled by endogenous gibberellins and that the effect of phytochrome is mediated by gibberellin synthesis.  相似文献   

18.
The 7S seed storage protein (β-conglycinin) of soybean (Glycine max [L]. Merr.) has three major subunits; α, α′, and β. Accumulation of the β-subunit, but not the α- and α′-subunits, has been shown to be repressed by exogenously applied methionine to the immature cotyledon culture system (LP Holowach, JF Thompson, JT Madison [1984] Plant Physiol 74: 576-583) and to be enhanced under sulfate deficiency in soybean plants (KR Gayler, GE Sykes [1985] Plant Physiol 78: 582-585). Transgenic petunia (Petunia hybrida) harboring either the α′- or β-subunit gene were constructed to test whether the patterns of differential expression were retained in petunia. Petunia regulates these genes in a similar way as soybean in response to sulfur nutritional stimuli, i.e. (a) expression of the β-subunit gene is repressed by exogenous methionine in in vitro cultured seeds, whereas the α′-subunit gene expression is not affected; and (b) accumulation of the β-subunit is enhanced by sulfur deficiency. The pattern of accumulation of major seed storage protein of petunia was not affected by these treatments. These results indicate that this mechanism of gene regulation in response to sulfur nutrition is conserved in petunia even though it is not used to regulate its own major seed storage proteins.  相似文献   

19.
Rate of extension growth, as measured by height, of 2-month-old Valencia orange trees (Citrus sinensis (L.) Osbeck) on rough lemon rootstock (C. limon Burm. f.) was reduced to 0.5 mm from 5.0 mm day–1 with 0.1% (w/v) sprays of the growth retardant AMO-1618 (4 hydroxy-5-isopropyl-2-methyl phenyl trimethyl-ammonium chloride, 1 piperdine carboxylate) every 2 weeks during 11 weeks under natural daylight in a glasshouse. Trees sprayed with AMO-1618 were 10-fold shorter, more compact in appearance, and leaves were greener and more oval shaped than those on untreated trees. There was no chemical burn. AMO-1618-sprayed trees were more cold hardy than untreated trees during controlled-temperature, cold-hardening regimes. Alone, AMO-1618 had no effect on freeze tolerance at -5.5° C. AMO-1618 also was associated with greater tree tolerance to freeze injury determined by O2 uptake in Valencia leaves to as low as -6.7° C.This paper reports the results of research only. Mention of a trademark of a proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

20.
Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4′-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4′-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4′-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4′-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号