首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala(1227) to Ser(1251)), which contains a single Trp residue (W(1246)) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala(1227) was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring ( approximately 50% alpha-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp(1246) to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including lambda(max), lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

2.
Adrenocorticotropin (ACTH) and α-melanocyte stimulating hormone (α-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of α-MSH are the same initial sequence of ACTH and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1–21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in α-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1–24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in α-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems.  相似文献   

3.
The human multidrug resistance protein MRP1 (or ABCC1) is one of the most important members of the large ABC transporter family, in terms of both its biological (tissue defense) and pharmacological functions. Many studies have investigated the function of MRP1, but structural data remain scarce for this protein. We investigated the structure and dynamics of predicted transmembrane fragment 17 (TM17, from Ala1227 to Ser1251), which contains a single Trp residue (W1246) involved in MRP1 substrate specificity and transport function. We synthesized TM17 and a modified peptide in which Ala1227 was replaced by a charged Lys residue. Both peptides were readily solubilized in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. The interaction of these peptides with DM or DPC micelles was studied by steady-state and time-resolved Trp fluorescence spectroscopy, including experiments in which Trp was quenched by acrylamide or by two brominated analogs of DM. The secondary structure of these peptides was determined by circular dichroism. Overall, the results obtained indicated significant structuring (∼50% α-helix) of TM17 in the presence of either DM or DPC micelles as compared to buffer. A main interfacial location of TM17 is proposed, based on significant accessibility of Trp1246 to brominated alkyl chains of DM and/or acrylamide. The comparison of various fluorescence parameters including λmax, lifetime distributions and Trp rotational mobility with those determined for model fluorescent transmembrane helices in the same detergents is also consistent with the interfacial location of TM17. We therefore suggest that TM17 intrinsic properties may be insufficient for its transmembrane insertion as proposed by the MRP1 consensus topological model. This insertion may also be controlled by additional constraints such as interactions with other TM domains and its position in the protein sequence. The particular pattern of behavior of this predicted transmembrane peptide may be the hallmark of a fragment involved in substrate transport.  相似文献   

4.
The human multidrug resistance-associated protein 1 (hMRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily. Together with P-glycoprotein (ABCB1) and the breast cancer resistance protein (BCRP/ABCG2), hMRP1 confers resistance to a large number of structurally diverse drugs. The current topological model of hMRP1 includes two cytosolic nucleotide-binding domains and 17 putative transmembrane (TM) helices forming three membrane-spanning domains. Mutagenesis and labeling studies have shown TM16 and TM17 to be important for function. We characterized the insertion of the TM16 fragment into dodecylphosphocholine (DPC) or n-dodecyl-β-d-maltoside (DM) micelles as membrane mimics and extended our previous work on TM17 (Vincent et al., 2007, Biochim. Biophys. Acta 1768, 538). We synthesized TM16 and TM17, with the Trp residues, W1198 in TM16 and W1246 in TM17, acting as an intrinsic fluorescent probe, and TM16 and TM17 Trp variants, to probe different positions in the peptide sequence. We assessed the interaction of peptides with membrane mimics by evaluating the increase in fluorescence intensity resulting from such interactions. In all micelle-bound peptides, the tryptophan residue appeared to be located, on average, in the head group micelle region, as shown by its fluorescence spectrum. Each tryptophan residue was partially accessible to both acrylamide and the brominated acyl chains of two DM analogs, as shown by fluorescence quenching. Tryptophan fluorescence lifetimes were found to depend on the position of the tryptophan residue in the various peptides, probably reflecting differences in local structures. Far UV CD spectra showed that TM16 contained significant β-strand structures. Together with the high Trp correlation times, the presence of these structures suggests that TM16 self-association may occur at the interface. In conclusion, this experimental study suggests an interfacial location for both TM16 and TM17 in membrane mimics. In terms of overall hMRP1 structure, the experimentally demonstrated amphipathic properties of these TM are consistent with a role in the lining of an at least partly hydrophilic transport pore, as suggested by the currently accepted structural model, the final structure being modified by interaction with other TM helices.  相似文献   

5.
Oh D  Shin SY  Lee S  Kang JH  Kim SD  Ryu PD  Hahm KS  Kim Y 《Biochemistry》2000,39(39):11855-11864
A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CA-MA), incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA), has potent antimicrobial activity without toxicity against human erythrocytes. To investigate the effects of the Gly-Ile-Gly hinge sequence of CA-MA on the antibacterial and antitumor activities, two analogues in which the Gly-Ile-Gly sequence of CA-MA is either deleted (P1) or substituted with Pro (P2) were synthesized. The role of the tryptophan residue at position 2 of CA-MA on its antibiotic activity was also investigated using two analogues, in which the Trp2 residue of CA-MA is replaced with either Ala (P3) or Leu (P4). The tertiary structures of CA-MA, P2, and P4 in DPC micelles, as determined by NMR spectroscopy, have a short amphiphilic helix in the N-terminus and about three turns of alpha-helix in the C-terminus, with the flexible hinge region between them. The P1 analogue has an alpha-helix from Leu4 to Ala14 without any hinge structure. P1 has significantly decreased lytic activities against bacterial and tumor cells and PC/PS vesicles (3:1, w/w), and reduced pore-forming activity on lipid bilayers, while P2 retained effective lytic activities and pore-forming activity. The N-terminal region of P3 has a flexible structure without any specific secondary structure. The P3 modification caused a drastic decrease in the antibiotic activities, whereas P4, with the hydrophobic Leu side chain at position 2, retained its activities. On the basis of the tertiary structures, antibiotic activities, vesicle-disrupting activities, and pore-forming activities, the structure-function relationships can be summarized as follows. The partial insertion of the Trp2 of CA-MA into the membrane, as well as the electrostatic interactions between the positively charged Lys residues at the N-terminus of the CA-MA and the anionic phospholipid headgroups, leads to the primary binding to the cell membrane. Then, the flexibility or bending potential induced by the Gly-Ile-Gly hinge sequence or the Pro residue in the central part of the peptides may allow the alpha-helix in the C-terminus to span the lipid bilayer. These structural features are crucial for the potent antibiotic activities of CA-MA.  相似文献   

6.
7.
Tang YC  Deber CM 《Biopolymers》2004,76(2):110-118
Lysine tagging of hydrophobic peptides of parent sequence KKAAALAAAAALAAWAALAAAKKKK-NH(2) has been shown to facilitate their synthesis and purification through water solubilization, yet not impact on the intrinsic properties of the hydrophobic core sequence with respect to its insertion into membranes in an alpha-helical conformation. However, due to their positively charged character, such peptides often become bound to phospholipid head groups in membrane surfaces, which inhibits their transbilayer insertion and/or prevents their transport across cellular bilayers. We sought to develop more neutral peptides of membrane-permeable character by replacing most Lys residues with uncharged peptoid [N-(R)glycyl] residues, which might similarly confer water solubility while retaining membrane-interactive properties of the hydrophobic core. Several "peptoid-tagged" derivatives of the parent peptide were prepared with varying peptoid content, with five of the six Lys residues replaced with peptoids Nala and/or Nval. Conformations of these peptides measured by circular dichroism spectroscopy demonstrated that these water-soluble peptides retain the alpha-helix structure in micelles (lysophosphatidylcholine and sodium dodecyl sulfate) notwithstanding the known helix-breaking capacity of the peptoid tags. Blue shifts in Trp fluorescence spectra and quenching experiments with acrylamide confirmed that peptoid-tagged peptides insert spontaneously into micellar membranes. Results suggest that upon introduction of uncharged tags, the interaction between the membrane and the peptides is dominated by the hydrophobicity of the peptide core rather than the electrostatic interactions between the Lys and the head groups of the lipids. The overall findings indicate that peptoid residues are effective surrogates for Lys as uncharged water-solubilizing tags and, as such, provide a potentially valuable feature of design of membrane-interactive peptides.  相似文献   

8.
The fluorescence properties of tryptophan octyl ester (TOE), a hydrophobic model of Trp in proteins, were investigated in various mixed micelles of dodecylmaltoside (DM) and 7,8-dibromododecyl beta-maltoside (BrDM) or 10,11-dibromoundecanoyl beta-maltoside (BrUM). This study focuses on the mechanism via which these brominated detergents quench the fluorescence of TOE in a micellar system. The experiments were performed at a pH at which TOE is uncharged and almost completely bound to detergent micelles. TOE binding was monitored by its enhanced fluorescence in pure DM micelles or its quenched fluorescence in pure BrUM or BrDM micelles. In DM/BrUM and DM/BrDM mixed micelles, the fluorescence intensity of TOE decreased, as a nonlinear function of the molar fraction of brominated detergent, to almost zero in pure brominated detergent. The indole moiety of TOE is therefore highly accessible to the bromine atoms located on the detergent alkyl chain because quenching by bromines occurs by direct contact with the fluorophore. TOE is simultaneously poorly accessible to iodide (I(-)), a water-soluble collisional quencher. TOE time-resolved fluorescence intensity decay is heterogeneous in pure DM micelles, with four lifetimes (from 0.2 to 4.4 ns) at the maximum emission wavelength. Such heterogeneity may arise from dipolar relaxation processes in a motionally restricted medium, as suggested by the time-dependent (nanoseconds) red shift (11 nm) of the TOE emission spectrum, and from the existence of various TOE conformations. Time-resolved quenching experiments for TOE in mixed micelles showed that the excited-state lifetime values decreased only slightly with increases in the proportion of BrDM or BrUM. In contrast, the relative amplitude of the component with the longest lifetime decreased significantly relative to that of the short-lived species. This is consistent with a mainly static mechanism for the quenching of TOE by brominated detergents. Molecular modeling of TOE (in vacuum and in water) suggested that the indole ring was stabilized by folding back upon the octyl chain, forming a hairpin conformation. Within micelles, the presence of such folded conformations, making it possible for the entire molecule to be located in the hydrophobic part of the micelle, is consistent with the results of fluorescence quenching experiments. TOE rotational correlation time values, in the nanosecond range, were consistent with a hindered rotation of the indole moiety and a rotation of the complete TOE molecule in the pure DM or mixed detergent micelles. These results, obtained with a simple micellar model system, provide a basis for the interpretation of fluorescence quenching by brominated detergents in more complex systems such as protein- or peptide-detergent complexes.  相似文献   

9.
Lew S  Ren J  London E 《Biochemistry》2000,39(32):9632-9640
To explore the influence of amino acid composition on the behavior of membrane-inserted alpha-helices, we examined the behavior of Lys-flanked polyleucyl (pLeu) helices containing a single polar/ionizable residue within their hydrophobic core. To evaluate the location of the helices within the membrane by fluorescence, each contained a Trp residue at the center of the sequence. When incorporated into dioleoylphosphatidylcholine (DOPC) model membrane vesicles, pLeu helices with or without a single Ser, Asn, Lys, or Asp residue in the hydrophobic core maintained a transmembrane state (named the N state) at neutral and acidic pH. In this state, the central Trp exhibited highly blue-shifted fluorescence, and fluorescence quenching by nitroxide-labeled lipids showed it located at the bilayer center. A state in which Trp fluorescence red-shifted by several nanometers (named the B state) was observed above pH 10-11. B state formation appears to result from deprotonation of the flanking Lys residues. Despite the red shift in Trp emission, fluorescence quenching showed that in the B state the Trp at most is only slightly shallower than in the N state, suggesting the B state also is a transmembrane or near-transmembrane structure. The B state is characterized by increased helix oligomerization, as shown by the dependence of Trp lambda(max) on the concentration of the peptide within the bilayer at high pH. The pLeu peptide with a Asp residue in the core underwent a pH-dependent transition at a lower pH than the other peptides (pH 8-9). At high pH, it exhibited both a more highly red-shifted fluorescence and shallower Trp location than the other peptides. This state (named the S state) did not exhibit a concentration-dependent Trp lambda(max). We attribute S state behavior to the formation of a charged Asp residue at high pH, and a consequent movement of the Asp toward the membrane surface, resulting in the formation of a nontransmembrane state. We conclude that a polar or ionizable residue can readily be tolerated in a single transmembrane helix, but that the charges on ionizable residues in the core and regions flanking the helix significantly modulate the stability of transmembrane insertion and/or helix-helix association.  相似文献   

10.
The peptide acetylYEAAAKEARAKEAAAKAamide exhibits the dichroic features characteristic of a monomeric helix/coil transition in aqueous solution. Nineteen variants of this peptide each containing a different residue at position 9 were prepared by solid-phase peptide synthesis and purified by reversed-phase chromatography. The thermal dependence of the far-ultraviolet dichroic spectrum of each of these peptides except that containing proline is characteristic for an alpha-helix/coil transition. The relative stability of the helical forms of these peptides does not correlate with the preference of the variable amino acid to occupy a middle position in a protein helix. It is likely that the specific interactions of the variable residue with its local environment obscure any inherent preference of the residue to reside in an alpha-helix.  相似文献   

11.
Fluorescence of an intramembranous polypeptide (T-3) derived from the carboxy-terminal sequence of lipophilin was studied in aqueous solution, detergent micelles, and lipid vesicles. In all cases, the fluorescence of the only Trp (211) was indicative of a hydrophobic, buried residue. Addition of lysophosphatidylcholine (LPC) or phosphatidylcholine (PC) gave Trp-211 a more hydrophobic, less quenching environment as compared to that in aqueous solution. Energy transfer between Trp and Tyr observed in aqueous solution was decreased by the addition of lipid or detergent. There was limited quenching by acrylamide both in the aqueous and in the lipid or detergent environments. However, PC or LPC further decreased this quenching. Cs+ and I- were even less accessible than acrylamide to Trp, further proving that the Trp was located inside the lipid bilayer. The quenching indicated that I- binds to positive charges of the protein located on the surface of the membrane. This, combined with knowledge of the sequence of lipophilin, suggested that Trp-211 was located within the membrane but was close to amino acid residues that are external to the bilayer.  相似文献   

12.
N1 is the first residue in an alpha-helix. We have measured the contribution of all 20 amino acids to the stability of a small helical peptide CH(3)CO-XAAAAQAAAAQAAGY-NH(2) at the N1 position. By substituting every residue into the N1 position, we were able to investigate the stabilizing role of each amino acid in an isolated context. The helix content of each of the 20 peptides was measured by circular dichroism (CD) spectroscopy. The data were analyzed by our modified Lifson-Roig helix-coil theory, which includes the n1 parameter, to find free energies for placing a residue into the N1 position. The rank order for free energies is Asp(-), Ala > Glu(-) > Glu(0) > Trp, Leu, Ser > Asp(0), Thr, Gln, Met, Ile > Val, Pro > Lys(+), Arg, His(0) > Cys, Gly > Phe > Asn, Tyr, His(+). N1 preferences are clearly distinct from preferences for the preceding N-cap and alpha-helix interior. pK(a) values were measured for Asp, Glu, and His, and protonation-free energies were calculated for Asp and Glu. The dissociation of the Asp proton is less favorable than that of Glu, and this reflects its involvement in a stronger stabilizing interaction at the N terminus. Proline is not energetically favored at the alpha-helix N terminus despite having a high propensity for this position in crystal structures. The data presented are of value both in rationalizing mutations at N1 alpha-helix sites in proteins and in predicting the helix contents of peptides.  相似文献   

13.
The human multidrug-resistance-associated protein 1 (hMRP1/ABCC1) belongs to the large ATP-binding cassette transporter superfamily. In normal tissues, hMRP1 is involved in tissue defense, whereas, in cancer cells, it is overproduced and contributes to resistance to chemotherapy. We previously investigated the folding properties of the predicted transmembrane fragments (TM) TM16, and TM17 from membrane-spanning domain 2 (MSD2). These TMs folded only partially as an α-helix and were located in the polar headgroup region of detergent micelles used as membrane mimics (Vincent et al. in Biochim Biophys Acta 1768:538–552, 2007; de Foresta et al. in Biochim Biophys Acta 1798:401–414, 2010). We have now extended these studies to TM4 and TM10, from MSD0 and MSD1, respectively. TM10 may be involved in the substrate translocation pathway whereas the role of TM4 is less predictable, because few studies have focused on MSD0, a domain present in some hMRP1 homologs only. Each TM contained a single Trp residue (W142 or W553) acting as an intrinsic fluorescent probe. The location and dynamics of the TMs in dodecylphosphocholine (DPC) or n-dodecyl-β-d-maltoside (DDM) micelles were studied by Trp steady-state and time-resolved fluorescence, including quenching experiments. Overall TM structure was analyzed by far-UV circular dichroism studies in detergent micelles and TFE. TM10 behaved similarly to TM16 and TM17, with an interfacial location in micelles consistent with a possible role in lining the transport pore. By contrast, TM4 behaved like a classical TM fragment with a high α-helical content, and its transmembrane insertion did not require its interaction with other TMs.  相似文献   

14.
Membrane protein insertion in the lipid bilayer is determining for their activity and is governed by various factors such as specific sequence motifs or key amino-acids. A detailed fluorescence study of such factors is exemplified with PMP1, a small (38 residues) single-membrane span protein that regulates the plasma membrane H+-ATPase in yeast and specifically interacts with phosphatidylserines. Such interactions may stabilize raft domains that have been shown to contain H+-ATPase. Previous NMR studies of various fragments have focused on the critical role of interfacial residues in the PMP1 structure and intermolecular interactions. The C-terminal domain contains a terminal Phe (F38), a single Trp (W28) and a single Tyr (Y25) that may act together to anchor the protein in the membrane. In order to describe the location and dynamics of W28 and the influence of Y25 on protein insertion within membrane, we carried out a detailed steady-state and time-resolved fluorescence study of the synthetic G13-F38 fragment and its Tyr-less mutant, Y25L in various membrane mimetic systems. Detergent micelles are conveniently used for this purpose. We used dodecylphosphocholine (DPC) in order to compare with and complement previous NMR results. In addition, dodecylmaltoside (DM) was used so that we could apply our recently described new quenching method by two brominated analogs of DM (de Foresta et al. 2002, Eur. Biophys. J. 31:185–97). In both systems, and in the presence and absence of Y25, W28 was shown to be located below but close to the polar headgroup region, as shown by its maximum emission wavelengths (λmax), curves for the quenching of Trp by the brominated analogs of DM and bimolecular constants for quenching (kq) by acrylamide. Results were interpreted by comparison with calibration data obtained with fluorescent model peptides. Time-resolved anisotropy measurements were consistent with PMP1 fragment immobilization within peptide-detergent complexes. We tentatively assigned the two major Trp lifetimes to the Trp (χ1=60° and 180°) rotamers, based on the recent lifetime–rotamer correlation proposed for model cyclic peptides (Pan and Barkley 2004, Biophys J 86:3828–35). We also analyzed the role of the hydrophobic anchor, by comparing the micelle binding of fragments of various lengths including the synthesized full-length protein and detected peculiar differences for protein interaction with the polar headgroups of DM or DPC.  相似文献   

15.
The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.  相似文献   

16.
Ren J  Lew S  Wang J  London E 《Biochemistry》1999,38(18):5905-5912
We examined the effect of the length of the hydrophobic core of Lys-flanked poly(Leu) peptides on their behavior when inserted into model membranes. Peptide structure and membrane location were assessed by the fluorescence emission lambdamax of a Trp residue in the center of the peptide sequence, the quenching of Trp fluorescence by nitroxide-labeled lipids (parallax analysis), and circular dichroism. Peptides in which the hydrophobic core varied in length from 11 to 23 residues were found to be largely alpha-helical when inserted into the bilayer. In dioleoylphosphatidylcholine (diC18:1PC) bilayers, a peptide with a 19-residue hydrophobic core exhibited highly blue-shifted fluorescence, an indication of Trp location in a nonpolar environment, and quenching localized the Trp to the bilayer center, an indication of transmembrane structure. A peptide with an 11-residue hydrophobic core exhibited emission that was red-shifted, suggesting a more polar Trp environment, and quenching showed the Trp was significantly displaced from the bilayer center, indicating that this peptide formed a nontransmembranous structure. A peptide with a 23-residue hydrophobic core gave somewhat red-shifted fluorescence, but quenching demonstrated the Trp was still close to the bilayer center, consistent with a transmembrane structure. Analogous behavior was observed when the behavior of individual peptides was examined in model membranes with various bilayer widths. Other experiments demonstrated that in diC18:1PC bilayers the dilution of the membrane concentration of the peptide with a 23-residue hydrophobic core resulted in a blue shift of fluorescence, suggesting the red-shifted fluorescence at higher peptide concentrations was due to helix oligomerization. The intermolecular self-quenching of rhodamine observed when the peptide was rhodamine-labeled, and the concentration dependence of self-quenching, supported this conclusion. These studies indicate that the mismatch between helix length and bilayer width can control membrane location, orientation, and helix-helix interactions, and thus may mismatch control both membrane protein folding and the interactions between membrane proteins.  相似文献   

17.
Subunit W of photosystem II (PsbW) is a single-span thylakoid membrane protein that is synthesized with a cleavable hydrophobic signal peptide and integrated into the thylakoid membrane by an apparently spontaneous mechanism. In this study, we have analyzed the secondary structure of the pre-protein at early stages of the insertion pathway, using purified recombinant pre-PsbW. We show that the protein remains soluble in Tris buffer after removal of detergent. Under these conditions pre-PsbW contains no detectable alpha-helix, whereas substantial alpha-helical structure is present in SDS micelles. In aqueous buffer, the tryptophan fluorescence emission characteristics are intermediate between those of solvent-exposed and hydrophobic environments, suggesting the formation of a partially folded structure. If denaturants are excluded from the purification protocol, pre-PsbW purifies instead as a 180-kDa oligomer with substantial alpha-helical structure. Mature-size PsbW was prepared by removal of the presequence, and we show that this protein also contains alpha-helix in detergent but in lower quantities than the pre-protein. We therefore propose that pre-PsbW contains alpha-helical structure in both the mature protein and the signal peptide in nonpolar environments. We propose that pre-PsbW acquires its alpha-helical structure only during the later, membrane-bound stages of the insertion pathway, after which it forms a "helical hairpin"-type loop intermediate in the thylakoid membrane.  相似文献   

18.
Many attempts have been made to rationalize the use of detergents for membrane protein studies [J. Biol. Chem. 264 (1989) 4907]. The barrier properties of the detergent headgroup may be one parameter critically involved in protein protection. In this paper, we analyzed these properties using a model system, by comparing the accessibility of tryptophan octyl ester (TOE) to water-soluble collisional quenchers (iodide and acrylamide) in three detergent micelles. The detergents used differed only in the chemical nature of their polar headgroups, zwitterionic for dodecylphosphocholine (DPC) and nonionic for octa(ethylene glycol) dodecyl monoether (C(12)E(8)) and dodecylmaltoside (DM). In all cases, in phosphate buffer at pH 7.5, the binding of 5 microM TOE was complete in the presence of a slight excess of detergent micelles over TOE molecules, resulting in a significant blue shift and greater intensity of TOE fluorescence emission. The resulting quantum yield of bound TOE was between 0.08 (in DPC) and 0.12 (in DM) with an emission maximum (lambda(max)) of approximately 335 nm whatever the detergent micelle. Time-resolved fluorescence intensity decays of TOE at lambda(max) were heterogeneous in all micelles (3-4 lifetime populations), with mean lifetimes of 1.7 ns in DPC, and 2 ns in both C(12)E(8) and DM. TOE fluorescence quenching by iodide, in detergent micelles, yielded linear Stern-Volmer plots characteristic of a dynamic quenching process. The accessibility of TOE to this ion was the greatest with C(12)E(8), followed by DPC and finally DM (Stern-Volmer quenching constants K(sv) of 2 to 5.5 M(-1)). In contrast, the accessibility of TOE to acrylamide was greatest with DPC, followed by C(12)E(8) and finally DM (K(sv)=2.7-7.1 M(-1)). TOE also presents less rotational mobility in DM than in the other two detergents, as shown from anisotropy decay measurements. These results, together with previous TOE quenching measurements with brominated detergents [Biophys. J. 77 (1999) 3071] provide reference data for analyzing Trp characteristics in peptide (and more indirectly protein)-detergent complexes. The main finding of this study was that TOE was less accessible (to soluble quenchers) in DM than in DPC and C(12)E(8), the cohesion of DM headgroup region being suggested to play a role in the ability of this detergent to protect function and stability of solubilized membrane proteins.  相似文献   

19.
J Gallay  M Vincent  C Nicot  M Waks 《Biochemistry》1987,26(18):5738-5747
The tryptophan (Trp) rotational dynamics and the secondary structure of the peptide hormones adrenocorticotropin-(1-24) [ACTH(1-24)]--the fully active N-terminal fragment of adrenocorticotropin-(1-39)--and glucagon were studied in aqueous solutions and in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/isooctane, a system selected to mimic the membrane-water interface. In aqueous solutions, the total fluorescence intensity decays of their single Trp residue [Trp-9 and Trp-25 for ACTH(1-24) and glucagon, respectively] are multiexponential. This is also the case for ACTH(5-10), a fragment of the adrenocorticotropin "message" region. Time-resolved fluorescence anisotropy data evidence a high degree of rotational freedom of the single Trp residue. Transfer of these peptides from water to the aqueous core of reverse micelles induces severe restrictions of the Trp internal motion and of its local environment. The results indicate that the Trp-9 residue in ACTH(1-24 is maintained in the close neighborhood of the water-AOT molecular interface where the water molecules are strongly immobilized. By contrast, the Trp residues in ACTH(5-10) and glucagon are likely to be located closer to the center of the micellar aqueous core where the water molecules are in a more mobile state. Furthermore, the above location of Trp can be extended to the peptide chains themselves as evidenced by the overall correlation time values of the peptide-containing micelles. Nevertheless, in all peptides, the indole ring remains susceptible to oxidation by N-bromosuccinimide. Circular dichroism measurements evidence the induction in glucagon of alpha-helices remaining unaffected by the micellar water content. Conversely, beta-sheet structures are favored in ACTH(1-24) at low water-to-surfactant molar ratios (w0) but are disrupted by subsequent additions of water. These results are discussed in terms of the possible role of the micellar interfaces in selecting the preferred peptide dynamical conformation(s)  相似文献   

20.
Permeabilization of the phospholipid membrane, induced by the antibiotic peptides zervamicin IIB (ZER), ampullosporin A (AMP) and antiamoebin I (ANT) was investigated in a vesicular model system. Membrane-perturbing properties of these 15/16 residue peptides were examined by measuring the K(+) transport across phosphatidyl choline (PC) membrane and by dissipation of the transmembrane potential. The membrane activities are found to decrease in the order ZER>AMP>ANT, which correlates with the sequence of their binding affinities. To follow the insertion of the N-terminal Trp residue of ZER and AMP, the environmental sensitivity of its fluorescence was explored as well as the fluorescence quenching by water-soluble (iodide) and membrane-bound (5- and 16-doxyl stearic acids) quenchers. In contrast to AMP, the binding affinity of ZER as well as the depth of its Trp penetration is strongly influenced by the thickness of the membrane (diC(16:1)PC, diC(18:1)PC, C(16:0)/C(18:1)PC, diC(20:1)PC). In thin membranes, ZER shows a higher tendency to transmembrane alignment. In thick membranes, the in-plane surface association of these peptaibols results in a deeper insertion of the Trp residue of AMP which is in agreement with model calculations on the localization of both peptide molecules at the hydrophilic-hydrophobic interface. The observed differences between the membrane affinities/activities of the studied peptaibols are discussed in relation to their hydrophobic and amphipathic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号