首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Single barnacle muscle fibers fromBalanus nubilus were used to study the effect of elevated external potassium concentration, [K] o , on Na efflux, membrane potential, and cyclic nucleotide levels. Elevation of [K] o causes a prompt, transient stimulation of the ouabain-insensitive Na efflux. The minimal effective concentrations is 20mm. The membrane potential of ouabain-treated fibers bathed in 10mm Ca2+ artificial seawater (ASW) or in Ca2+-free ASW decreases approximately linearly with increasing logarithm of [K] o . The slope of the plot is slightly steeper for fibers bathed in Ca2+-free ASW. The magnitude of the stimulatory response of the ouabain-insensitive Na efflux to 100mmK o depends on the external Na+ and Ca2+ concentrations, as well as on external pH, but is independent of external Mg2+ concentration. External application of 10–4 m verapamil virtually abolishes the response of the Na efflux to subsequent K-depolarization. Stabilization of myoplasmic-free Ca2+ by injection of 250mm EGTA before exposure of the fiber to 100mm K o leads to 60% reduction in the magnitude of the stimulation. Pre-injection of a pure inhibitor of cyclic AMP-dependent protein kinase reduces the response of the Na efflux to 100mm K o by 50%. Increasing intracellular ATP, by injection of 0.5m ATP-Na2 before elevation of [K] o , fails to prolong the duration of the stimulation of the Na efflux. Exposure of ouabain-treated, cannulated fibers to 100mm K o for time periods ranging from 30 sec to 10 min causes a small (60%), but significant, increase in the intracellular content of cyclic AMP with little change in the cyclic GMP level. These results are compatible with the view that the stimulatory response of the ouabain-insensitive Na efflux to high K o is largely due to a fall in myoplasmicpCa resulting from activation of voltage-dependent Ca2+ channels and that an accompanying rise in internal cAMP accounts for a portion of this response.  相似文献   

2.
Twentyg of 20-hydroxyecdysone (20-he) were applied topically to nymphalHyalomma dromedarii Koch on the day of detachment. In emerging adult females, some neurosecretory cells (nsc) in certain synganglion centers exhibited changes in size and/or neurosecretory material (nsm) shape, distribution and/or quantity. These changes were compared with those normally occurring in untreated unfed, semifed virgin and mated, and engorged females. 20-he effects included (a) accelerating the changes induced by mating and/or feeding in certainnsc, (b) reducing, to various extents,nsc response to mating and feeding, and (c) inducing changes in somensc which do not normally exhibit any changes in untreated females. The results suggest that (a) most femalensc respond more or less similarly to indigenous 20-he, (b) 20-he may have a role as a positive feedback regulator fornsm synthesis and/or release by certainnsc, (c) the response to 20-he may be primarily a function ofnsc location in the synganglion, and/or (d)nsc considered to be of one type may actually belong to different cell types.  相似文献   

3.
Summary Forskolin is a unique diterpene that may directly activate the catalytic subunit of adenylate cyclase. We therefore examined the effect of 50 m forskohn on osmotic water permeability in rabbit cortical collecting tubules perfusedin vitro. Forskolin increased net volume flux (J v , from 0.30 to 1.22 nl/mm/min,P<0.02) in all tubules. The hydro-osmotic effect of forskolin was similar with respect to magnitude and time course to that produced by a maximal dose (250 U/ml) of arginine vasopressin. An additive effect onJ v andL p was not observed when maximal concentrations of forskolin and arginine vasopressin were given simultaneously. The compound d(CH2)5Tyr(Et) VAVP, which noncompetitively inhibits the vasopressin receptor, significantly reduced collecting tubular hydro-osmotic response to arginine vasopressin. In contrast, the hydro-osmotic response to forskolin was maintained in the presence of d(CH2)5 Tyr(Et)VAVP. However, the hydro-osmotic response to forskolin could be inhibited by 1.0 m guanine 5-(,-imido) triphosphate (GppNHp) and by the calmodulin inhibitor N-(6-amenohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). These results demonstrate that forskolin exerts an hydro-osmotic effect in the mammalian nephron which occurs independent of the vasopressin receptor. Guanine nucleotide regulatory proteins may modulate the osmotic water permeability effect of forskolin. Finally, calmodulin is required for full expression of the effect of forskolin to increase osmotic water flux.  相似文献   

4.
5.
Summary Suspensions of log phase cells ofRhodospirillum rubrum at pH 5.5 show a light-induced decrease in the pH of the medium which is reversed during the subsequent dark period. The velocity and magnitude of the pH change were the same whether the cells were bubbled with air, CO2-free air or N2 during experimentation. The pH response is temperature dependent. Phenazine methyl sulfate (PMS) at concentrations above 0.05mm stimulates the light-induced pH change. PMS at 1mm gives a 2-fold increase in the initial rate upon illumination and a 1.5-fold increase in the total change in pH after 2 min of illumination. The inhibition of the proton transport by 10 g/ml antimycin A or 20 m 2-n-heptyl-4-hydroxyquinoline-N-oxide can be partially relieved by PMS. However, inhibition of the light-induced proton transport with 0.5mm 2,4-dinitrophenol or 3 m carbonylcyanide-m-chlorophenylhydrazone (CCCP) cannot be overcome by addition of PMS. Valinomycin, at a concentration of 3 m, caused a slight stimulation of the light-induced proton transport in the presence of 200mm KCl. The inhibition of proton transport by 3 m CCCP was partially relieved with 3 m valinomycin in the presence of 200mm KCl, but the antibiotic was without effect when the cells were suspended in 200mm NaCl. The results are discussed in terms of current theories of the action of PMS, antimycin A, valinomycin, and uncouplers on the light-induced electron flow and photophosphorylation inR. rubrum.  相似文献   

6.
Summary. L-Dihydroxyphenylalanine (L-DOPA), the anti-parkinsonian drug affording the greatest symptomatic relief of parkinsonian symptoms, is still misunderstood in terms of its neurotoxic potential and the mechanism by which generated dopamine (DA) is able to exert an effect despite the absence of DA innervation of target sites in basal ganglia. This review summaries important aspects and new developments on these themes. On the basis of L-DOPA therapy in animal models of Parkinsons disease, it appears that L-DOPA is actually neuroprotective, not neurotoxic, as indicated by L-DOPAs reducing striatal tissue content of the reactive oxygen species, hydroxyl radical (HO), and by leaving unaltered the extraneuronal in vivo microdialysate level of HO. In addition, the potential beneficial anti-parkinsonian effect of L-DOPA is actually increased because of the fact that the basal ganglia are largely DA-denervated. That is, from in vivo microdialysis studies it can be clearly demonstrated that extraneuronal in vivo microdialysate DA levels are actually higher in the DA-denervated vs. the intact striatum of rats – owing to the absence of DA transporter (i.e., uptake sites) on the absent DA nerve terminal fibers in parkinsonian brain. In essence, there are fewer pumps removing DA from the extraneuronal pool. Finally, the undesired motor dyskinesias that commonly accompany long-term L-DOPA therapy, can be viewed as an outcome of L-DOPAs sensitizing DA receptors (D1–D5), an effect easily replicated by repeated DA agonist treatments (especially agonist of the D2 class) in animals, even if the brain is not DA-denervated. The newest findings demonstrate that L-DOPA induces BDNF release from corticostriatal fibers, which in-turn enhances the expression of D3 receptors; and that this effect is associated with motor dyskinesias (and it is blocked by D3 antagonists). The recent evidence on mechanisms and effects of L-DOPA increases our understanding of this benefical anti-parkinsonian drug, and can lead to improvements in L-DOPA effects while providing avenues for reducing or eliminating L-DOPAs deleterious effects.  相似文献   

7.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   

8.
The immune response of allophenic mice of type C57BL/6(A × SJL) F1 to GL administered in complete Freund's adjuvant was tested. Control mice of the three strains C57BL/6, A, and SJL are all nonresponders to this antigen. However, the F1 generations of C57BL/6 × A, C57BL/6 × SJL, and A × SJL were all responders to the antigen, so that the complementarity of at least two genes is confirmed. The allophenic mice showed no further complementation beyond the F1 generation, a result which may argue against the possibility that more than two genes control the response to GL in these mouse strains. Characterization of the allophenic mice over several months showed that they exhibit chimeric drift, both in their coat color and in peripheral white blood cell population. There is no apparent correlation of coat color to the lymphocyte composition of the mice at any one time. The mice are true chimeras, since killing of the two populations of white blood cells with two different anti-H-2 sera produced a 100 percent killing. The immune response of individual allophenic mice to GL showed a good correlation to the number of A × SJL lympho-cytes in the animal.Abbreviations used in this paper are GL an amino acid polymer of 57 %l-glutamic acid, 38%l-lysine, and 5%l-phenylalanine - GLT15 an amino acid polymer ofl-glutamic acid,l-lysine, and 15 %l-tyrosine - (T,G)-A-L an amino acid polymer having a polylysine backbone with side chains of polyd-l-alanine, terminating in short sequences of tyrosine and glutamic acid - GAT10 an amino acid polymer of 60%l-glutamic acid, 30%l-alanine, and 10%l-tyrosine - GLA5 an amino acid polymer of 57%l-glutamic acid, 38%l-lysine, and 5%l-alanine - DNP 2,4 dinitrophenyl - BGG bovine gamma globulin - FCS fetal calf serum - PWBC peripheral white blood cell - SWBC spleen white blood cell - T cell thymus-derived lymphocyte - B cell bone marrow-derived lymphocyte  相似文献   

9.
Summary The growth of Rhodotorula glutinis is inhibited by both D-threo chloramphenicol and an L-threo isomer of chloramphenicol (lacking the dichloroacetyl group), causing an increase in the mean generation time, in a variety of media, approximately proportional to the concentration of antibiotic. The antibiotic is not removed from the growth medium in any quantity during this inhibition of growth. The oxygen uptakes of normal and chloramphenicol-grown cells of R. glutinis are similar when expressed on a dry weight basis. The oxygen uptake of normal and L-threo isomer-grown cells is strongly inhibited by antimycin A, whereas D-threo chloramphenicol-grown cells are unaffected. There was no evidence to suggest that any uncoupling of phosphorylation occurred with either isomer. Pythium ultimum mycelium also showed similar oxygen uptakes per unit dry weight whether grown in the presence or absence of D-threo chloramphenicol. The D-threo chloramphenicol-grown mycelium was also insensitive to antimycin A in contrast to the normal mycelium which was strongly inhibited. P. ultimum grows slowly in the presence of 100 g/ml D-threo chloramphenicol in a glucose salts medium, but is completely inhibited by a similar concentration in a glycerol salts medium. The L-threo isomer does not inhibit the growth of P. ultimum.The mitochondria of Rhodotorula glutinis show a progressive disorganization when grown in the presence of increasing concentrations of D-threo chloramphenicol up to 1000 g/ml. There is an associated over synthesis of cell wall material in the higher concentrations of the antibiotic. The L-threo isomer produces no obvious fine structural abnormalities even at concentrations of 1000 g/ml.  相似文献   

10.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

11.
Summary Giant axons ofLoligo pealei were voltage clamped in artificial seawater solutions containing varying concentrations of calcium from 10 to 100mm, and the sodium conductance inactivation was measured with a series of two-pulse experiments. Theh vs. voltage curve showed a shift of about 10 mV in the depolarizing direction on the voltage axis for a tenfold increase in external calcium without substantial alteration in the slope of the voltage dependence. The kinetics of the inactivation process were found to be exponential for hyperpolarizing prepulses, but showed some indication of a sigmoidal decay for depolarizing prepulses in all calcium concentrations employed. Increasing calcium increased the delay in the sigmoidal response. The inactivation time constant h increased as a function of calcium concentration over the potential range studied, –10 to –90 mV. The values of the rate constants h and h are decreased with an increase in calcium and these effects are not consistent with parallel shifts of the rate constant vs. voltage curves along the voltage axis for changes in calcium concentration.Magnesium does not behave as an equimolar substitute for calcium. The effect of a solution containing 10mm calcium and 50mm magnesium is intermediate to that of solutions containing 10 and 30mm calcium alone.Predictions of a recent model for the sodium conductance (Moore, J.W., Cox, E.B., 1976Biophys. J. 16:171) which employs calcium binding were compared with the experimental data.  相似文献   

12.
Summary Conventional microelectrodes were used to study the effects of SITS (4-acetamido-4-isothiocyanostilbene-2,2-disulfonate) on the basolateral membrane potentialVbl of the superficial proximal straight tubule (PST) of the rabbit kidney perfusedin vitro. Addition of 0.1mm SITS to the bathing solution resulted in a slow and irreversible hyperpolarization ofVbl from –42.5±1.17 (37) mV to –77.3±0.83 (52) mV. The new steady-state potential was reached in 10 to 15 min and was accompanied by visible cell swelling. Associated with thisVbl hyperpolarization was: 1) an increased steady-state depolarization (from 6.2±0.77 (17) mV to 25.7±0.83 (29) mV) in response to increasing bath potassium concentration from 5 to 16.7mm (HK); 2) a decreased transient depolarization (from 19.8±1.88 (8) mV to 0.43±0.37 (8) mV) in response to decreasing bath bicarbonate concentration from 22 to 6.6mm at constant bath pH (L-HCO3); and 3) inhibition of a depolarizing overshoot and a decreased steady-state depolarization (from 35.9±1.84 (12) mV to 4.7±1.37 (13) mV) in response to reducing bath sodium concentration from 144 to zero (0-Na). Sodium, chloride and NMDG (N-methyl-d-glucamine) were used as the substituting ions, respectively. These results are consistent with the presence of a coupled sodium-bicarbonate carrier in the basolateral membrane which is electrogenic and SITS inhibitable. Comparison of the time course of SITS effects on these ion-substitution responses suggests that the inhibition of the bicarbonate exit pathway(s) is the primary event and that the changes inVbl and in the steady-stateVbl responses to HK and 0-Na are secondary events which may be related to changes in intracellular composition and/or basolateral membrane properties.  相似文献   

13.
Petrobia harti (Ewing) diapauses in the egg stage. Adult females lay either diapause or nondiapause eggs. On the University of Thessaloniki campus (41°N), the mite was found to develop on leaves ofOxalis corniculata L. throughout the year, while no mites were found on leaves ofOxalis articulata Savigny growing in the same area. In the laboratory the mite could be maintained equally well on detached leaves of both plant species, kept on wet cotton-wool.Forty to 90% females laying diapause eggs (dlf) were produced when the mites developed under LD 1212 and 19±1 °C, or LD 168 and 19±1 °C or 25±1 °C on leaves ofO. articulata detached from plants grown in the open in various seasons. Under the same conditions, a very low to zero percentage ofdlf was produced onO. corniculata. By rearing certain feeding stages on one of these twoOxalis hosts, and the other feeding stages on the other host, various percentages ofdlf were obtained. These percentages were the net effect of the antagonistic action of the twoOxalis species.By rearing the mites at LD 8.515.5, LD 1212 or LD 168 and a temperature of 19±1 °C onO. articulata leaves renewed every 3 days, or every 16–18 days, or not at all, it could be shown that diapause induction or aversion is caused by the direct effect of photoperiod on the mites, and not by an effect through the host leaves.When wholeO. articulata plants were grown under LD 168 and 19±1 °C in the laboratory, or developed in the open during April and May, flowers were produced, while under LD 1212 no flowering occurred. In the laboratory under diapause-inducing conditions, higher percentages ofdlf were produced on leaves detached from flowering plants than on leaves detached from plants not flowering.OnO. articulata leaves at 20 °C, photoperiods with photophases equal to or longer than 12 h induced from 70 to 80%dlf, while photoperiods with photophases equal to or shorter than 10.9 h induced very low to zero percentages. By transferring different chrysalis stages from a diapause-inducing (LD 1212) to a diapause-averting (LD 8.515.5) photoperiod, and vice versa, it was found that the nymphochrysalis through deutonymph stages were sensitive to photoperiod, the deutochrysalis and deutonymph being the most sensitive.Under an LD 1212 photoperiod, a temperature of 20 °C induced diapause, whereas 25 °C, 30 °C, or a daynight thermoperiod of 25 °C18 °C suppressed it.  相似文献   

14.
Various reagents which prevent enzyme inhibition by phenolic compounds were tested in attempts to improve the medium used to extract the Li-controlled enzyme activities from white clover leaves. The addition of 50 mm diethyldithiocarbamate to the extraction medium gave a fivefold increase in the enzyme activity of LiLi white clover extracts against p-nitrophenyl -d-glucoside, linamarin-lotaustralin, and p-nitrophenyl -d-galactoside. These three substrates were used in tests on the effect of genotype on enzyme activity. An absence of dominance at the Li locus was demonstrated, with a dosage effect of Li alleles on enzyme activity. A new Li allele was identified in the Lili clone, C11, which had low levels of enzyme activity. In crosses with two lili clones, Li(C11)li progeny were produced with activity levels similar to those of the C11 parent. Inhibition and heat-inactivation tests suggest that the lili clone, D4, produces an altered form of -glucosidase which may also be present in LiLi plants. The nature of the Li locus is discussed.  相似文献   

15.
The neutral carotenoids of 3 phenotypically distinct albino-1 (al- i) strains, a wild type, 2 heterokaryons containing 2 al- i, alleles and 1 heterokaryon containing al- i+al-2 markers were analyzed. All al- i strains and the al- i heterokaryons contained large amounts of phytoene and only traces of higher carotenoids such as -carotene and lycopene which are responsible for the phenotypic variation at this locus (from pure white to lemon yellow). The biochemical lesion for al- i mutants affects phytoene dehydrogenase and enzyme leakiness accounts for the gene polymorphism. There is no evidence for interallelic complementation at the al- i locus.  相似文献   

16.
Summary The characteristics of the cholera toxin-stimulated adenylate cyclase of toad (Bufus marinus) and rat erythrocyte plasma membranes have been examined, with special emphasis on the response to purine nucleotides, fluoride, magnesium and catecholamine hormones. Toad erythrocytes briefly exposed to low concentrations of cholera toxin (40,000 to 60,000 molecules per cell) and incubated 2 to 4 hr at 30°C exhibit dramatic alterations in the kinetic and regulatory properties of adenylate cyclase. The approximateK m for ATP, Mg++ increases from about 1.8 to 3.4mm in the toxinstimulated enzyme. The stimulation by cholera toxin increases with increasing ATP, Mg++ concentrations, from 20% at low levels (0.2mm) to 500% at high concentrations (greater than 3mm). Addition of GTP, Mg++ (0.2mm) restores normal kinetic properties to the toxin-modified enzyme, such that stimulation is most simply explained by an elevation ofV max. GTP enhances the toxin-treated enzyme activity two-to fourfold at low ATP concentrations, but this effect disappears at high levels of the substrate. At 0.6mm ATP and 5mm MgCl2 the apparentK a for GTP, Mg++ is 5 to 10m. The control (unstimulated) enzyme demonstrates a very small response to the guanyl nucleotide. 5-ITP also stimulates the toxin-treated enzyme but cGMP, guanine, and the pyrimidine nucleotides have no effect. Cholera toxin also alters the activation of adenylate cyclase by free Mg++, decreasing the apparentK a from about 25 to 5mm. (–)-Epinephrine sensitizes the toad erythrocyte adenylate cyclase to GTP and also decreases the apparentK a for free metal. Sodium fluoride, which cause a 70- to 100-fold activation of enzyme activity, has little effect on sensitivity to GTP, and does not change the apparentK a for Mg++; moreover, it prevents modulation of these parameters by cholera toxin. Conversely, cholera toxin severely inhibits NaF activation, and in the presence of fluoride ion the usual three- to fivefold stimulation by toxin becomes a 30 to 60% inhibition of activity. The toxin-stimulated enzyme can be further activated by catecholamines; in the presence of GTP the (–)-epinephrine stimulation is enhanced by two- to threefold. The increased catecholamine stimulation of toad erythrocyte adenylate cyclase induced by cholera toxin is explained primarily by an increase in the maximal extent of activation by the hormones. Rat erythrocyte adenylate cyclase is also modified by cholera toxin. In the mammalian system the apparent affinity for the hormone appears to be increased. Cholera toxin thus induces profound and nearly permanent changes in adenylate cyclase by a unique process which mimics the stimulation by hormones in important ways, and which also accentuates the normal hormonal response. The relevance of these findings to the mechanism of action of cholera toxin is considered.Part of this work was reported at the 1974 meeting of the Federation of American Societies for Experimental Biology (Bennett & Cuatrecasas, 1974).  相似文献   

17.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

18.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

19.
Summary A kinetic analysis of anion self-exchange in human red blood cells, in the presence of an irreversible inhibitor, is presented and applied to the study of the inactivation of sulfate transport by three isothiocyanates: 3-isothiocyano-1,5-naphthalenedisulfonic acid, disodium salt (INDS), 1-isothiocyano-4-naphthalene sulfonic acid, sodium salt, monohydrate (INS), and 1-isothiocyano-4-benzenesulfonic acid, sodium salt, monohydrate (IBS). The time dependence of the inhibition of sulfate transport by the isothiocyanates used could be described by a single exponential and could be shown to contain a reversible and an irreversible component. In each case a portion of sulfate efflux was found to be resistant to inactivation. The residual portion of the sulfate efflux varied with inhibition: 4% for INS, 16% for INDS, and 34% for IBS. INS showed the largest reversible inhibitory effect (12% of the flux remaining at 0.2mm inhibitor concentration), while INDS showed the weakest effect (92% of the flux remaining at 0.3mm inhibitor concentration). IBS had the highest rate of inactivation while INDS had the lowest. The kinetic analysis further suggests that all three isothiocyanates bind reversibly to an inhibitory site on the membrane before they bind covalently, and therefore irreversibly, to the same site on the membrane. The equilibrium constant for the dissociation of the reversibly-bound complex,K i, and the rate of irreversible inactivation after all membrane sites are reversibly bound,k max, have been computed for all three inhibitors: INDS (K i=420m,k max=5.04 hr–1), INS (K i=148 m,k max=6.48 hr–1), and IBS (K i=208 m,k max=8.11 hr–1).  相似文献   

20.
In nerve tissue the histochemical nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reaction is considered a suitable marker for nitric oxide synthase (NOS) activity. We have previously shown that the NOS-specific inhibitorl-nitroarginine (l-NNA) can block NADPH-d staining in intermediolateral (IML) neurons of the rat spinal cord; such a reaction might serve as a control for the presence of a NOS-related catalytic activity, i.e.,l-NNA-dependent NO synthesis in these neurons. However,l-NNA inhibition of neuronal NADPH-d is inconsistent and is therefore disputed by others. This prompted us to reinvestigate the reaction conditions to provide a standardized protocol for inhibition experiments. In IML neurons of formaldehyde-fixed spinal cord tissue, inhibition of NADPH-d reaction was tested by preincubation of frozen sections with the flavin-binder diphenylene iodonium chloride (DPI, 10 M-1 mM) which blocked the NADPH-d reaction in a concentration-dependent way, suggesting an inverse relationship of inhibitor concentration and final reaction product generated. Preincubation with the NOS-specific inhibitorl-NNA in glycine-NaOH buffer (pH 8.5–9.5) but notl-nitroarginine methyl ester (l-NAME) revealed a concentration-dependent blocking effect on neuronal NADPH-d comparable to the effects seen with DPI, suggesting the existence of al-NNA sensitive NADPH-d activity. Blocking withl-NNA (100 M-10 mM) was prevented by excessl-arginine (10–100 mM), suggesting competitive binding sites. NADPH-d staining was not inhibited by 7-nitro indazole, another NOS inhibitor. Thus, in formaldehyde-fixed nervous tissue both DPI andl-NNA inhibit the NOS-associated catalytic NADPH-d activity, thereby preventing NADPH-dependent conversion of nitroblue tetrazolium to formazan.Presented in the Workshop Detection of NO-synthases at the XXXVI Symposium of the Society for Histochemistry on Oxy Radicals, 20–23 September 1994, Heidelberg, Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号