首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The racemic structures of (RS)-2-amino-3-chloropropanoic acid [(RS)-ACP] and (RS)-2-amino-3-chloropropanoic acid hydrochloride [(RS-ACP·HCl] were examined to obtain (R)- and (S)-ACP via optical resolution by preferential crystallization. The melting point, infrared spectrum, solubility, and ternary solubility diagram suggested that (RS)-ACP·HCl exists as a conglomerate and that (RS)-ACP forms a racemic compound. Optical resolution by preferential crystallization of (RS)-ACP·HCl was successfully achieved to yield (R)- and (S)-ACP·HCl. Optically pure (R)- and (S)-ACP were obtained from the purified (R)-and (S)-ACP·HCl, respectively. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Optically active 1,4-thiazane-3-carboxylic acid [TCA] was synthesized from cysteine via optical resolution by preferential crystallization. The intermediate (RS)-2-amino-3-[(2-chloroethyl)sulfanyl]propanoic acid hydrochlo-ride [(RS)-ACS?HCl] was found to exist as a conglomerate based on its melting point, solubility and IR spectrum. (RS)-ACS?HCl was optically resolved by preferential crystallization to yield (R)- and (S)-ACS?HCl. (R)- and (S)-ACS?HCl thus obtained were recrystallized from a mixture of hydrochloric acid and 2-propanol, taking account of the solubility of (RS)-ACS?HCl, efficiently yielding both enantiomers in optically pure forms. (R)- and (S)-TCA were then respectively synthesized by the cyclization of (R)- and (S)-ACS?HCl in ethanol in the presence of triethylamine.  相似文献   

3.
An attempt was made to use a simple procedure to obtain (R)- and (S)-2-aminobutanoic acids [(R)- and (S)-1] which are non-proteinogenic α-amino acids and are useful as chiral reagents in asymmetric syntheses. Compound (RS)-1 p-toluenesulfonate [(RS)-2], which is known to exist as a conglomerate, was optically resolved by replacing crystallization with (R)- and (S)-methionine p-toluenesulfonate [(R)- and (S)-3] as optically active co-solutes. When (S)-3 was employed as the co-solute, (R)-2 was preferentially crystallized from a supersaturated solution of (RS)-2 in 1-propanol, as was (S)-2 in the presence of (R)-3. (R)- and (S)-2 recrystallized from 1-propanol were treated with triethylamine in methanol to give (R)- and (S)-1 in optically pure forms.  相似文献   

4.
First, (RS)-2-chloro-3-phenylpropanoic acid [(RS)-CPP] was optically resolved using ethyl (S)-phenylalaninate as a resolving agent, aiming at preparation of optically active 2-methylamino-3-phenylpropanoic acid (MPP). The (R)-CPP obtained as the sodium salt monohydrate was reacted with methylamine to give (S)-2-methylamino-3-phenylpropanoic acid [(S)-MPP]. Next, the optical resolution of (RS)-MPP was also attempted via molecular compound formation with optically active mandelic acid (MAN). The molecular compound of (R)-MPP with (S)-MAN [(R)-MPP (S)-MAN] was obtained as the less soluble diastereomeric compound, while the (S)-MPP (S)-MAN compound was found to be the more soluble one. Recrystallization of (R)-MPP (S)-MAN compound from water, followed by treatment with acetone, gave optically pure (R)-MPP in 79% yield, based on a half amount of the starting (RS)-MPP. The (S)-MPP obtained from (S)-MPP (S)-MAN compound was again subjected to formation of molecular compound with (R)-MAN to give optically pure (S,)-MPP in 66% yield. Chirality 9:386–389, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
L-Phenylalanine was converted to optically impure (R)-(+)-2,6-dimethyl-1,5-heptadien-3-ol 2 (19% e.e.) .(R)-(+)-2 (96% e.e.) was prepared by a kinetic resolution of (±)-2. Acetylation of the pure (R)-(+ )- 2 gave the pheromone of the Comstock mealybug ( Pseudococcus comstockii KUWANA) [(R)-(+)-1].  相似文献   

6.
Lycopene has a large number of geometric isomers caused by E/Z isomerization at arbitrary sites within the 11 conjugated double bonds, offering varying characteristics related to features such as antioxidant capacity and bioavailability. However, the geometric structures of only a few lycopene Z-isomers have been thoroughly identified from natural sources. In this study, seven multi-Z-isomers of lycopene, (9Z,13′Z)-, (5Z,13Z,9′Z)-, (9Z,9′Z)-, (5Z,13′Z)-, (5Z,9′Z)-, (5Z,9Z,5′Z)-, and (5Z,9Z)-lycopene, were obtained from tomato samples by thermal isomerization, and then isolated by elaborate chromatography, and fully assigned using proton nuclear magnetic resonance. Moreover, the theoretically preferred pathway from (all-E)-lycopene to di-Z-isomers was examined with a computational approach using a Gaussian program. Fine-tuning of the HPLC separation conditions led to the discovery of novel multi-Z-isomers, and whose formation was supported by advanced theoretical calculations.  相似文献   

7.
The multiphosphorylated tryptic peptide αs1‐casein(59–79) has been shown to be antigenic with anti‐casein antibodies. In an approach to determine the amino acyl residues critical for antibody binding we undertook an epitope analysis of the peptide using overlapping synthetic peptides. With αs1‐casein(59–79) as the adsorbed antigen in a competitive ELISA only two of five overlapping synthetic peptides at 1 mM significantly inhibited binding of the anti‐casein antibodies. Peptides Glu‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu and Ile‐Val‐Pro‐Asn‐Ser(P)‐Val‐Glu‐Glu inhibited antibody binding by 20.0±3.6% and 60.3±7.9%, respectively. The epitope of Glu63‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu70 was further localised to the phosphoseryl cluster as the peptide Ser(P)‐Ser(P)‐Ser(P) significantly inhibited binding of the anti‐casein antibodies to αs1‐casein(59–79) by 29.5±7.4%. Substitution of Ser(P)75 with Ser75 in the second inhibitory peptide Ile‐Val‐Pro‐Asn‐Ser(P)75‐Val‐Glu‐Glu also abolished inhibition of antibody binding to αs1‐casein (59–79) demonstrating that Ser(P)75 is also a critical residue for recognition by the antibodies. These data show that the phosphorylated residues in the cluster sequence ‐Ser(P)66‐Ser(P)‐Ser(P)68 and in the sequence ‐Pro73‐Asn‐Ser(P)‐Val‐Glu77‐ are critical for antibody binding to αs1‐casein(59–79) and further demonstrate that a highly phosphorylated segment of a protein can be antigenic. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The systematic position of the Malagasy Phlebotomus (Diptera: Psychodidae) species was assessed in molecular phylogenetic studies. Three molecular markers were sequenced: cytochrome b of the mitochondrial DNA; ITS2, and the D8 domain of the ribosomal DNA. The following species were studied: Phlebotomus (Anaphlebotomus) berentiensis, Phlebotomus (Anaphlebotomus) fertei, Phlebotomus (Anaphlebotomus) fontenillei, Phlebotomus (Anaphlebotomus) vaomalalae and Phlebotomus (Anaphlebotomus) vincenti from Madagascar; Phlebotomus (Anaphlebotomus) stantoni from Asia, and Phlebotomus (Anaphlebotomus) rodhaini from Africa. The following outgroups were selected: Phlebotomus (Euphlebotomus) argentipes, Phlebotomus (Euphlebotomus) barguesae, Phlebotomus (Larroussius) perfiliewi s.l. and Phlebotomus (Adlerius) simici. Each marker analysed by maximum parsimony and maximum likelihood supports the monophyly of the Malagasy Phlebotomus spp. Consequently, we create a new subgenus for these species: Madaphlebotomus subg. nov. This molecular individualization is reinforced by the originality of their spermathecae and by the fact that their geographical distribution is limited to Madagascar, and considers the high level of endemism on this island.  相似文献   

9.
The analysis of the volatiles released by the novel bacterial isolate Chitinophaga Fx7914 revealed the presence of ca. 200 compounds including different methyl esters. These esters comprise monomethyl‐ and dimethyl‐branched, saturated, and unsaturated fatty acid methyl esters that have not been described as bacterial volatiles before. More than 30 esters of medium C‐chain length were identified, which belong to five main classes, methyl (S)‐2‐methylalkanoates (class A), methyl (S)‐2,(ω?1)‐dimethylalkanoates (class B), methyl 2,(ω?2)‐dimethylalkanoates (class C), methyl (E)‐2‐methylalk‐2‐enoates (class D), and methyl (E)‐2,(ω?1)‐dimethylalk‐2‐enoates (class E). The structures of the compounds were verified by GC/MS analysis and synthesis of the target compounds as methyl (S)‐2‐methyloctanoate ( 28 ), methyl (S)‐2,7‐dimethyloctanoate ((S)‐ 43 ), methyl 2,6‐dimethyloctanoate ( 49 ), methyl (E)‐2‐methylnon‐2‐enoate ( 20a ), and methyl (E)‐2,7‐dimethyloct‐2‐enoate ( 41a ). Furthermore, the natural saturated 2‐methyl‐branched methyl esters showed (S)‐configuration as confirmed by GC/MS experiments using chiral phases. Additionally, the biosynthetic pathway leading to the methyl esters was investigated by feeding experiments with labeled precursors. The Me group at C(2) is introduced by propanoate incorporation, while the methyl ester is formed from the respective carboxylic acid by a methyltransferase using S‐adenosylmethionine (SAM).  相似文献   

10.
11.
Electrophilic additions of DL- and L-Cys to propenoic acid afforded (RS)- and (R)-2-amino-3-(2-carboxyethylthio)propanoic acids [(RS)- and (R)-ACE], respectively. (RS)-ACE was found to exist as a conglomerate based on its melting point, solubility, and infrared spectrum. (RS)-ACE was optically resolved by preferential crystallization to yield (R)- and (S)-ACE. The obtained (R)- and (S)-ACE were efficiently recrystallized from water, taking account of the solubility of (RS)-ACE, to give them in optically pure form.  相似文献   

12.
Thirty optically active nonprotein α-amino acids and peptides based thereon have been screened for their ability to interact with bovine trypsin and proteinase K from Tritirachium album Limber, which belong to the group of serine proteases. Both structure-based drug design approach and determination of enzyme activity have been used to identify low molecular weight inhibitors of trypsin and proteinase K. Compounds have been selected that according to the docking analysis were able to interact with trypsin and proteinase K. Following the docking analysis measurement of enzymes activity (2R,3S)-β-hydroxyleucine and (2S,3R)-β-hydroxyleucine inhibited both enzymes activity, whereas (S)-α-methyl-β-phenylalanine, (R)-α-methyl-β-phenylalanine, (S)-allylglycine, (R)-allylglycine, (S)-α-allylalanine, (R)-α-allylalanine and allo-O-ethylthreonine inhibited only proteinase K; and N-formyl-(S)-methionyl-(2S,3R)-hydroxyleucine, N-formyl-(S)-methionyl-(2R,3S)-hydroxyleucine, N-formyl-(S)-methionyl-(S)-allylglycine and N-formyl-(S)-methionyl-(R)-allylglycine inhibited trypsin. It has been shown that inhibition of trypsin by (2R,3S)-β-hydroxyleucine and N-formyl-(S)-methionyl-(2R,3S)-hydroxyleucine is of a competitive mode.  相似文献   

13.
The acetylcholinesterase inhibition by enantiomers of exo‐ and endo‐2‐norbornyl‐Nn‐butylcarbamates shows high stereoselelectivity. For the acetylcholinesterase inhibitions by (R)‐(+)‐ and (S)‐(?)‐exo‐2‐norbornyl‐Nn‐butylcarbamates, the R‐enantiomer is more potent than the S‐enantiomer. But, for the acetylcholinesterase inhibitions by (R)‐(+)‐ and (S)‐(?)‐endo‐2‐norbornyl‐Nn‐butylcarbamates, the S‐enantiomer is more potent than the R‐enantiomer. Optically pure (R)‐(+)‐exo‐, (S)‐(?)‐exo‐, (R)‐(+)‐endo‐, and (S)‐(?)‐endo‐2‐norbornyl‐Nn‐butylcarbamates are synthesized from condensations of optically pure (R)‐(+)‐exo‐, (S)‐(?)‐exo‐, (R)‐(+)‐endo‐, and (S)‐(?)‐endo‐2‐norborneols with n‐butyl isocyanate, respectively. Optically pure norborneols are obtained from kinetic resolutions of their racemic esters by lipase catalysis in organic solvent. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Abstract

The addition reaction of either 3-bromo-5-lithiopyridine (2a) or 3-cyano-5-lithiopyridine (2b) to 2,3:4,5-di-O-isopropylidene-aldehydo-D-arabinose (1) or 2,4:3,5-di-O-benzylidene-aldehydo-D-lyxose (8) gave respectively a D-gluco/D-manno mixture of 3-bromo- and 3-cyano-5-(2,3:4,5-di-O-isopropylidene-pentitol-1-yl)pyridine (3a,b) or a D-galacto/D-talo mixture of respectively 3-bromo- and 3-cyano-5-(2,4:3,5-di-O-benzylidene-pentitol-1-yl)pyridine (9a,b). Mesylation of C-1′ followed by reaction with CF3COOH/H2O resulted in the formation of the corresponding D-arabino- or D-lyxofuranosyl pyridine C-nucleosides. The cyano group of (5b) and (11b) was converted into a carbamoyl group using Amberlite IRA 400 (OH?). 3-Cyano-5-D-arabinofuianosylpyridine (5b) was converted into 3-thiocarbamoyl-5-D-arabinofuranosyl-pyridine (7) using H2S and triethylamine.

None of the test compounds showed a marked cytostatic or antiviral activity in vitro.  相似文献   

15.
Based on a Cambridge Structural Database (CSD) search, a meta‐analysis of 116 structures of alanine H3NCαH(CH3)C′(O)O and its derivatives H3NCαH(CH3)C′(O)O(H/R/M), protonated, esterified, or coordinated at the carboxylic group, shows that in the first step of a chirality chain, the L configuration at Cα induces (M) and (P) conformations with respect to rotation around the central C′─Cα bond. In the second step, the (M) and (P) conformations selectively distort the planar carboxylic group CαC'(Ocis)Otrans to asymmetric flat (R) and (S) tetrahedra. High diastereoselectivities are caused by the two players attraction N…Ocis and repulsion Otrans…CMe, which work together in (L,M,R) configurations but against each other in (L,P,S) configurations.  相似文献   

16.
Arthrobacter sp. KNK168 shows (R)-enantioselective transaminase [(R)-transaminase] activity, which converts prochiral ketones into the corresponding chiral (R)-amines in the presence of an amino donor. The cultural conditions and reaction conditions for asymmetric synthesis of chiral amines with this microorganism were examined. The transaminase was inducible, and its production was enhanced by the addition of sec-butylamine and 3-amino-2,2-dimethylbutane to the culture medium. (R)-1-Phenylethylamine was a good amino donor for amination of 3,4-dimethoxyphenylacetone with Arthrobacter sp. KNK168. Under the optimum conditions, 126 mM (R)-3,4-dimethoxyamphetamine (DMA) [>99% enantiomeric excess (ee)] was synthesized from 154 mM 3,4-dimethoxyphenylacetone and 154 mM (R)-1-phenylethylamine through the whole cell reaction with an 82% conversion yield. (R)-Enantiomers of other amines, such as (R)-4-methoxyamphetamine, (R)-1-(3-hydroxyphenyl)ethylamine and (R)-1-(3-hydroxyphenyl)ethylamine, were also synthesized from the corresponding carbonyl compounds through asymmetric amination with Arthrobacter sp. KNK168.  相似文献   

17.
A simple synthesis of β-acaridial [(E)-1], the active principle of the sex, alarm and aggregation pheromone among astigmatid mites, was achieved in 5 steps from 1,2,4-butanetriol 2 in a 19% overall yield. Its analog, β-acariolal 8, was also prepared in a 63% yield by oxidation of the intermediate, β-acaridiol [(E)-7], with pyridinium dichromate (PDC). This synthetic route also gave β-(Z)-acaridiol [(Z)-7] by using a Z-selective base in the Wittig reaction. (Z)-7 was oxidized to give a new monoterpene, β-(Z)-acaridial [(Z)-1], which was detected as a trace component in the secretion of Caloglyphus polyphyllae, together with 8.  相似文献   

18.
Protective group-free syntheses of four racemic pheromones with a 6,8-dioxabicyclo[3.2.1]octane ring were achieved in five or six steps from commercially available (±)-3-butyn-2-ol (6) and 2-alkenyl halides or 2-alken-1-ol by employing Lewis acid-catalyzed acetalization of δ, ε-epoxy ketones as the key reaction. (±)-Frontalin (1) was prepared in a 25% overall yield in five steps from methallyl chloride (5a), (±)-endo-brevicomin (2) was prepared in a 23% overall yield in five steps from (E)-2-pentenyl bromide (5b), and (±)-exo-brevicomin (3) and (±)-3,4-dehydro-exo-brevicomin (4) were both prepared in a 4% overall yield in six steps based on (Z)-2-penten-1-ol (12).  相似文献   

19.
Summary rac-2-Acetoxy-1,1-dimethyl-1-sila-cyclohexane (rac-2) was synthesized by esterification of rac-1,1-dimethyl-1-sila-cyclohexan-2-ol (rac-1) with acetic anhydride. Enantioselective hydrolysis of rac-2 in aqueous solution, catalysed by a crude lipase preparation of Candida cylindracea (EC 3.1.1.3), led to the formation of (S)-1 (95% ee). Enantioselective transesterification of rac-1 with triacetin in isooctane, catalysed by the same enzyme preparation, yielded (S)-2 (95% ee), which was separated by chromatography from non-reacted (R)-1 (96% ee). Recrystallization led to an improvement of the enantiomeric purity of (R)-1 and (S)-1 up to >98% ee. Thus the enantiomers of rac-1 were prepared (100 mg scale) with high enantiomeric purities by the use of two different types of enzyme-catalysed reaction.  相似文献   

20.
Chen K  Ye J  Liu C  Di P  Chen J  Xiao Y  Li H  Zhang W 《Molecular biology reports》2012,39(3):3319-3326
(S)-Tetrahydroberberine [(S)-THB] oxidase is the last enzyme of benzylisoquinoline alkaloids pathway which catalyzes the dehydrogenation of four hydrogen atoms of (S)-THB to produce berberine, the final step of berberine biosynthesis. A (S)-THB gene, designated as Cs(S)-THBO (Genbank accession No. HQ393909), was cloned from a Corydalis saxicola cDNA library by rapid amplification of cDNA ends. The full-length of cDNA of Cs(S)-THBO was 1127 bp with an open reading frame of 699 bp that predicted to encode a 232-amino acid polypeptide, with a predicted molecular mass of 25.20 kDa. Cs(S)-THBO was the first (S)-THBO gene found in C. saxicola. Real-time quantitative PCR analysis indicated that Cs(S)-THBO was constitutively expressed in roots, stems, leaves and flowers of C. saxicola, and with the highest expression level in roots. The results of treatment experiment for plant defense responses revealed that expression of Cs(S)-THBO had a prominent diversity. Recombinant Cs(S)-THBO protein expressed in Escherichia coli strain BL21 (DE3) was active. The results of feeding experiment and HPLC–DAD–ESI–MSn analysis showed that Cs(S)-THBO had the function of catalyzing (S)-tetrahydroberberine to berberine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号