首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
Mutations leading to aberrant cytoplasmic localization of nucleophosmin (NPM) are the most frequent genetic alteration in acute myelogenous leukemia (AML). NPM binds the Arf tumor suppressor and protects it from degradation. The AML-associated NPM mutant (NPMmut) also binds p19Arf but is unable to protect it from degradation, which suggests that inactivation of p19Arf contributes to leukemogenesis in AMLs. We report here that NPM regulates turnover of the c-Myc oncoprotein by acting on the F-box protein Fbw7gamma, a component of the E3 ligase complex involved in the ubiquitination and proteasome degradation of c-Myc. NPM was required for nucleolar localization and stabilization of Fbw7gamma. As a consequence, c-Myc was stabilized in cells lacking NPM. Expression of NPMmut also led to c-Myc stabilization because of its ability to interact with Fbw7gamma and delocalize it to the cytoplasm, where it is degraded. Because Fbw7 induces degradation of other growth-promoting proteins, the NPM-Fbw7 interaction emerges as a central tumor suppressor mechanism in human cancer.  相似文献   

2.
The F-box protein Skp2 mediates c-Myc ubiquitylation by binding to the MB2 domain. However, the turnover of c-Myc is largely dependent on phosphorylation of threonine-58 and serine-62 in MB1, residues that are often mutated in cancer. We now show that the F-box protein Fbw7 interacts with and thereby destabilizes c-Myc in a manner dependent on phosphorylation of MB1. Whereas wild-type Fbw7 promoted c-Myc turnover in cells, an Fbw7 mutant lacking the F-box domain delayed it. Furthermore, depletion of Fbw7 by RNA interference increased both the abundance and transactivation activity of c-Myc. Accumulation of c-Myc was also apparent in mouse Fbw7-/- embryonic stem cells. These observations suggest that two F-box proteins, Fbw7 and Skp2, differentially regulate c-Myc stability by targeting MB1 and MB2, respectively.  相似文献   

3.
E3 ubiquitin ligases catalyze protein degradation by the ubiquitin-proteasome system, and their activity is tightly controlled. One level of regulation involves subcellular localization, and the Fbw7 tumor suppressor exemplifies this type of control. Fbw7 is the substrate-binding component of an SCF ubiquitin ligase that degrades critical oncoproteins. Alternative splicing produces three Fbw7 protein isoforms that occupy distinct compartments: Fbw7α is nucleoplasmic, Fbw7β is cytoplasmic, and Fbw7γ is nucleolar. We found that cancer-associated Fbw7 mutations that disrupt substrate binding prevent Fbw7γ nucleolar localization, implicating a substrate-like interaction in nucleolar targeting. We identified EBNA1-binding protein 2 (Ebp2) as the critical nucleolar factor that directly mediates Fbw7 nucleolar targeting. Ebp2 binds to Fbw7 like a substrate, and this is mediated by an Ebp2 degron that is phosphorylated by glycogen synthase kinase 3. However, despite these canonical substrate-like interactions, Fbw7 binding is largely uncoupled from Ebp2 turnover in vivo. Ebp2 thus acts like a pseudosubstrate that directly recruits Fbw7 to nucleoli.  相似文献   

4.
The human tumor suppressor Fbw7/hCdc4 functions as a phosphoepitope-specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination of cyclin E , Notch , c-Jun and c-Myc . Fbw7 loss in cancer may thus have profound effects on the pathways that govern cell division, differentiation, apoptosis, and cell growth. Fbw7-inactivating mutations occur in human tumor cell lines and primary cancers , and Fbw7 loss in cultured cells causes genetic instability . In mice, deletion of Fbw7 leads to embryonic lethality associated with defective Notch and cyclin E regulation . The human Fbw7 locus encodes three protein isoforms (Fbw7alpha, Fbw7beta, and Fbw7gamma) . We find that these isoforms occupy discrete subcellular compartments and have identified cis-acting localization signals within each isoform. Surprisingly, the Fbw7gamma isoform is nucleolar, colocalizes with c-Myc when the proteasome is inhibited, and regulates nucleolar c-Myc accumulation. Moreover, we find that knockdown of Fbw7 increases cell size consistent with its ability to control c-Myc levels in the nucleolus. We suggest that interactions between c-Myc and Fbw7gamma within the nucleolus regulate c-Myc's growth-promoting function and that c-Myc activation is likely to be an important oncogenic consequence of Fbw7 loss in cancers.  相似文献   

5.
Control of cellular proliferation is critical to cell viability. The F-box protein Fbw7 (hAgo/hCdc4/FBXW7) functions as a specificity factor for the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complex and targets several proteins required for cellular proliferation for ubiquitin-mediated destruction. Fbw7 exists as three splice variants but the mechanistic role of each is not entirely clear. We examined the regulation of the Fbw7-γ isoform, which has been implicated in the degradation of c-Myc. We show here that Fbw7-γ is an unstable protein and that its turnover is proteasome-dependent in transformed cells. Using a two-hybrid screen, we identified a novel interaction partner, SLP-1, which binds the N-terminal domain of Fbw7-γ. Overexpression of SLP-1 inhibits the degradation of Fbw7-γ, suggesting that this interaction can happen in vivo. When Fbw7-γ is stabilized by overexpression of SLP-1, c-Myc protein abundance decreases, suggesting that the SCFFbw7-γ complex maintains activity. We demonstrate that Cdk2 also binds the N-terminal domain of Fbw7-γ as well as SLP-1. Interestingly, co-expression of Cdk2 and SLP-1 does not inhibit Fbw7-γ degradation, suggesting that Cdk2 and SLP-1 may have opposing functions.  相似文献   

6.
Ubiquitination plays a key and complex role in the regulation of c-Myc stability, transactivation, and oncogenic activity. c-Myc is ubiquitinated by a number of ubiquitin ligases (E3s), such as SCFFbw7 and SCFSkp2. Depending on the E3s, ubiquitination can either positively or negatively regulate c-Myc levels and activity. Meanwhile, c-Myc ubiquitination can be reversed by deubiquitination. An early study showed that USP28 deubiquitinates c-Myc via interacting with Fbw7α whereas a recent study reveals that USP37 deubiquitinates c-Myc independently of Fbw7 and c-Myc phosphorylation. Consequently, both USP28 and USP37 stabilize c-Myc and enhance its activity. We recently found the nucleolar USP36 as a novel c-Myc deubiquitinase that controls the end-point of c-Myc degradation pathway in the nucleolus. Here we briefly review the current understanding of ubiquitination and deubiquitination regulation of c-Myc and further discuss the USP36-c-Myc regulatory pathway.  相似文献   

7.
Wogonin is a plant monoflavonoid which has been reported to inhibit cell growth and/or induce apoptosis in various tumors. The present study examined the apoptosis-inducing activity and underlying mechanism of action of wogonin in A549 cells. The results showed that wogonin was a potent inhibitor of the viability of A549 cells. Apoptotic protein changes detected after exposure to wogonin included decreased XIAP and Mcl-1 expression, increased cleaved-PARP expression and increased release of AIF and cytotchrome C. Western blot analysis showed that the activity of c-Myc/Skp2 and HDAC1/HDAC2 pathways, which play important roles in tumor progress, was decreased. Quantitative PCR identified increased levels of c-Myc mRNA and decreased levels of its protein. Protein levels of Fbw7α, GSK3β and Thr58-Myc, which are involved in c-Myc ubiquitin-dependent degradation, were also analyzed. After exposure to wogonin, Fbw7α and GSK3β expression decreased and Thr58-Myc expression increased. However, MG132 was unable to prevent c-Myc degradation. The present results suggest that wogonin has multiple anti-cancer effects associated with degradation of c-Myc, SKP2, HDAC1 and HDAC2. Its ability to induce apoptosis independently of Fbw7α suggests a possible use in drug-resistance cancer related to Fbw7 deficiency. Further studies are needed to determine which pathways are related to c-Myc and Fbw7α reversal and whether Thr58 phosphorylation of c-Myc is dependent on GSK3β.  相似文献   

8.
9.
10.
The F-box protein Fbw7 (also known as Fbxw7, hCdc4 and Sel-10) functions as a substrate recognition component of a SCF-type E3 ubiquitin ligase. SCF(Fbw7) facilitates polyubiquitination and subsequent degradation of various proteins such as Notch, cyclin E, c-Myc and c-Jun. Fbw7 is highly expressed in the nervous system and controls neural stem cell differentiation and apoptosis via Notch and c-Jun during embryonic development (Hoeck et al., 2010). Fbw7 deletion in the neural lineage is perinatal lethal and thus prohibits studying the role of Fbw7 in the adult nervous system. fbw7 mRNA is highly expressed in the postnatal brain and to gain insights into the function of Fbw7 in postnatal neurogenesis we analysed Fbw7 function in the cerebellum. We generated conditional Fbw7-knockout mice (fbw7?Cb) by inactivating Fbw7 specifically in the cerebellar anlage. This resulted in decreased cerebellar size, reduced Purkinje cell number and defects in axonal arborisation. Moreover, Fbw7-deficient cerebella showed supranumeral fissures and aberrant progenitor cell migration. Protein levels of the Fbw7 substrates Notch1 and N-terminally phosphorylated c-Jun were upregulated in fbw7?Cb mice. Concomitant deletion of c-Jun, and also the junAA knock-in mutation which specifically abrogates c-Jun N-terminal phosphorylation, rescued Purkinje cell numbers and arborisation in the fbw7?Cb background. Taken together these data demonstrate that Fbw7 is essential during cerebellar development, and identify N-terminally phosphorylated c-Jun as an important substrate of SCF(Fbw7) during neurogenesis.  相似文献   

11.
12.
Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM.  相似文献   

13.
14.
SCF ubiquitin ligases regulate the degradation of many proteins involved in thecontrol of cell division and growth. F-box proteins are the SCF components that bind tosubstrates, and this binding is usually signaled by substrate phosphorylation. TheFbw7/hCdc4 F-box protein was first recognized by its binding to cyclin E, and theSCFFbw7 is now known to target c-Myc, c-Jun and Notch for degradation, in addition toits role in cyclin E proteolysis. Fbw7 thus negatively regulates several keyoncoproteins. Accordingly, Fbw7 is a tumor suppressor that is mutated in a widespectrum of human cancers, and Fbw7 functions as a haploinsufficient tumor suppressorin mice. Because there are three Fbw7 isoforms that reside in different subcellularcompartments, as well as multiple Fbw7 substrates that are the products of protooncogenes,the mechanisms of tumor suppression by Fbw7 are complex and incompletelyunderstood. In this review we discuss the activities of the SCFFbw7 in the context of itsrole as a tumor suppressor and highlight recent findings demonstrating that dominantoncogenes disable Fbw7 function.  相似文献   

15.
F-box and WD-40 domain protein 7 (Fbw7) provides substrate specificity for the Skp1-Cullin1-F-box protein (SCF) ubiquitin ligase complex that targets multiple oncoproteins for degradation, including cyclin E, c-Myc, c-Jun, Notch, and mammalian target of rapamycin (mTOR). Fbw7 is a bona fide tumor suppressor, and loss-of-function mutations in FBXW7 have been identified in diverse human tumors. Although much is known about targets of the Fbw7 ubiquitin ligase pathway, relatively little is known about the regulation of Fbw7 expression. We identified a panel of candidate microRNA regulators of Fbw7 expression within a study of gene expression alterations in primary erythroblasts obtained from cyclin ET74A T393A knock-in mice, which have markedly dysregulated cyclin E expression. We found that overexpression of miR-223, in particular, significantly reduces FBXW7 mRNA levels, increases endogenous cyclin E protein and activity levels, and increases genomic instability. We next confirmed that miR-223 targets the FBXW7 3′-untranslated region. We then found that reduced miR-223 expression in primary mouse embryonic fibroblasts leads to increased Fbw7 expression and decreased cyclin E activity. Finally, we found that miR-223 expression is responsive to acute alterations in cyclin E regulation by the Fbw7 pathway. Together, our data indicate that miR-223 regulates Fbw7 expression and provide the first evidence that activity of the SCFFbw7 ubiquitin ligase can be modulated directly by the microRNA pathway.  相似文献   

16.
The SCF(FBW7) ubiquitin ligase degrades proteins involved in cell division, growth, and differentiation and is commonly mutated in cancers. The Fbw7 locus encodes three protein isoforms that occupy distinct subcellular localizations, suggesting that each has unique functions. We used gene targeting to create isoform-specific Fbw7-null mutations in human cells and found that the nucleoplasmic Fbw7alpha isoform accounts for almost all Fbw7 activity toward cyclin E, c-Myc, and sterol regulatory element binding protein 1. Cyclin E sensitivity to Fbw7 varies during the cell cycle, and this correlates with changes in cyclin E-cyclin-dependent kinase 2 (CDK2)-specific activity, cyclin E autophosphorylation, and CDK2 inhibitory phosphorylation. These data suggest that oscillations in cyclin E-CDK2-specific activity during the cell cycle regulate the timing of cyclin E degradation. Moreover, they highlight the utility of adeno-associated virus-mediated gene targeting in functional analyses of complex loci.  相似文献   

17.
18.
Turnover of cyclin E is controlled by SCF(Fbw7). Three isoforms of Fbw7 are produced by alternative splicing. Whereas Fbw7alpha and -gamma are nuclear and the beta-isoform is cytoplasmic in 293T cells, all three isoforms induce cyclin E destruction in an in vivo degradation assay. Cyclin E is phosphorylated on Thr(62), Ser(88), Ser(372), Thr(380), and Ser(384) in vivo. To examine the roles of phosphorylation in cyclin E turnover, a series of alanine point mutations in each of these sites were analyzed for Fbw7-driven degradation. As expected, mutation of the previously characterized residue Thr(380) to alanine led to profound defects of cyclin E turnover, and largely abolished association with Fbw7. Mutation of Thr(62) to alanine led to a dramatic reduction in the extent of Thr(380) phosphorylation, suggesting an indirect effect of this mutation on cyclin E turnover. Nevertheless, phosphopeptides centered at Thr(62) associated with Fbw7, and residual binding of cyclin E(T380A) to Fbw7 was abolished upon mutation of Thr(62), suggesting a minor role for this residue in direct association with Fbw7. Mutation of Ser(384) to alanine also rendered cyclin E resistant to degradation by Fbw7, with the largest effects being observed with Fbw7beta. Cyclin E(S384A) associated more weakly with Fbw7alpha and -beta isoforms but was not defective in Thr(380) phosphorylation. Analysis of the localization of cyclin E mutant proteins indicated selective accumulation of cyclin E(S384A) in the nucleus, which may contribute to the inability of cytoplasmic Fbw7beta to promote turnover of this cyclin E mutant protein.  相似文献   

19.
20.
F-box and WD repeat domain-containing 7α (Fbw7α) is the substrate recognition component of a ubiquitin ligase that controls the degradation of factors involved in cellular growth, including c-Myc, cyclin E, and c-Jun. In addition, Fbw7α degrades the nuclear form of sterol regulatory element-binding protein (SREBP)-1a, a global regulator of lipid synthesis, particularly during mitosis in cultured cells. This study investigated the in vivo role of Fbw7α in hepatic lipid metabolism. siRNA knockdown of Fbw7α in mice caused marked hepatosteatosis with the accumulation of triglycerides. However, inhibition of Fbw7α did not change the level of nuclear SREBP-1 protein or the expression of genes involved in fatty acid synthesis and oxidation. In vivo experiments on the gain and loss of Fbw7α function indicated that Fbw7α regulated the expression of peroxisome proliferator-activated receptor (PPAR) γ2 and its target genes involved in fatty acid uptake and triglyceride synthesis. These genes included fatty acid transporter Cd36, diacylglycerol acyltransferase 1 (Dgat1), and fat-specific protein 27 (Cidec). The regulation of PPARγ2 by Fbw7α was mediated, at least in part, by the direct degradation of the Krüppel-like factor 5 (KLF5) protein, upstream of PPARγ2 expression. Hepatic Fbw7α contributes to normal fatty acid and triglyceride metabolism, functions that represent novel aspects of this cell growth regulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号