首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With urea as sole nitrogen source, the addition of 5×10-5 M nickel sulfate to axenic cultures of Lemna paucicostata 6746 approximately doubles the rate of vegetative growth. Under a standard light-dark schedule, Ni2+ changes the daily pattern of respiratory CO2 output on urea from one having a single daily peak to one with two daily peaks which resembles that on ammonium or nitrate as sole nitrogen source. It also increases CO2 output by as much as 3-fold on a fresh-weight basis. These data represent the first confirmation in an intact higher plant of proposals, based on enzymology and tissue culture responses, for a role of Ni2+ in urea metabolism. Further, they indicate the possible existence of two distinct pathways of urea utilization.  相似文献   

2.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

3.
The influence of nutrient additions and sediment exchange on Aureococcus anophagefferens growth was studied using 200 l mesocosms deployed in situ at the Southampton College Marine Science Center in Long Island, New York. A. anophagefferens cell density increased in mesocosms with separate additions of the following materials: urea + glucose and desiccation-stressed Enteromorpha tissue. A decrease in A. anophagefferens cell density was observed in mesocosms with either no additions (control) or with added nitrate. A treatment containing a sediment layer exhibited an increase in average cell densities, but the increase was not statistically significant (P = 0.15). In the 9 day experiment, net growth of A. anophagefferens was only observed during the last 3 days, which corresponded to a period of high solar irradiation. Total chlorophyll concentration declined in all treatments during the first 6 days, which corresponded to relatively low daily irradiance, suggesting low-light stress on the phytoplankton assemblage during the initial phase of the experiment. During the ensuing sunny period, a 4–5-fold increase in chlorophyll concentration was observed in the nitrate and urea treatments with lesser increases in the other treatments. A. anophagefferens density increased relative to total phytoplankton biomass (Chl basis) in the urea + glucose and Enteromorpha treatments. Results are consistent with a prevailing hypothesis that organic nitrogen nutrients favor the growth of A. anophagefferens. Specifically, our evidence indicates that A. anophagefferens exhibited net population growth under organic N, but not inorganic N nutrient (specifically NO3) loading.  相似文献   

4.
High ratios of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) have been suggested to favor the growth of the brown tide alga Aureococcus anophagefferens. DON could provide a particular advantage in low light levels, as occur when blooms induce self-shading. We examined the effects of varying DON:DIN ratios on the photosynthetic abilities of cultured Aureococcus at two light intensities, 93 and 17 μmol photons m−2 s−1. Glutamic acid and urea were used as DON sources, and the remainder of the nitrogen was added as nitrate.In experiments examining Aureococcus growth with varying ratios of DONGlu:DINNitrate at two light intensities in batch culture, higher growth rates and biomass were observed in treatments containing DIN than in those with DON only, which contrasts with the results of previous studies. In semi-continuous growth experiments with varying DONUrea:DINNitrate ratios, low light cultures with urea had higher growth rates than those without urea. Also, the effective target area for light absorption per cell and photosystem II efficiency were greater for the low light cultures of each nutrient treatment, particularly when DON:DIN mixtures (33 and 67% NUrea) were used. The same pattern was seen in the maximum photosynthetic rates per cell in the light-saturated (Pmcell) and in the initial slope (αcell) of the PE (photosynthesis versus irradiance) curve, and in PON, POC and chlorophyll a cell−1. This indicates that the ability of Aureococcus to acclimate to low light conditions may be enhanced by the presence of both organic and inorganic nitrogen sources. These results suggest that Aureococcus physiology and photosynthesis are different during growth on a mixture of urea-N and nitrate than when either nitrogen source is present alone. Results of this study suggest that Aureococcus may not respond to all DON substrates in the same way, and that mixtures of DON and DIN may provide for higher photosynthetic rates, especially at low light. Our results did not, however, support earlier suggestions that growth on DON alone provides the brown tide alga with a large advantage at low light levels.  相似文献   

5.
Proteins are one of the major metabolites in biomass from microalgae that constitute the diet of marine organisms grown in aquaculture, and are essential for their growth. The quantity of this component is influenced by nutrients, temperature and light intensity, among others. We examined the growth, biomass production and protein of Chaetoceros muelleri with two sources of nitrogen (nitrate and urea) at three concentrations, using the medium f/2 (0.88 mol/L) (nitrates) as control. The treatments were the medium 2f (3.53 mol/L) and 4f (7.05 mol/L) with NO3-, and the medium f/2 (0.88 mol/L), 2f (3.53mol/L) and 4f (7.05 mol/L) with urea. In general, the productive parameters were greater using urea than nitrate in the media. Higher cell concentrations (2.83 x 106 cell/mL), average and cumulative growth rates (1.50 div/day and 6.01 divisions), dry weight (0.0044 g/L), and proportion of proteins (23.74%) were found when urea was used as the N source. However, most of the bands on the electrophoretic profile were present in the mediums with NO3- (~6.5 to 90 kDa).  相似文献   

6.
Summary Anabaena flos-aquae is grown in chemostats under phosphate and urea-limited conditions. Nitrogenase activity in phosphate-limited cells has a maximum activity at a dilution rate of 0.025 h-1 and is repressed 24-fold by 15 mM KNO3. Cultures growing on 1.5 mM nitrate obtain 1/2–2/3 of cell nitrogen from N2. Cells form inducible nitrite assimilating enzymes when grown on nitrate. Algae growing under A or He on limiting urea or phosphate-limited with nitrate have active nitrogenase. The ratio of nitrogenase activity to heterocyst numbers varied 90-fold depending on source of nitrogen, 15 mM KNO3 gave the smallest ratio. The regulatory mechanisms controlling the activity of nitrogenase in blue-green algae is discussed.  相似文献   

7.
Oxygenated nitrogen species, for example, the protonated form of nitrous acid (H2ONO+), dinitrogentrioxide (N2O3), dinitrogentetroxide (N2O4), or peroxynitrite (ONOO), can react with amines to form molecular nitrogen. These reactions can occur spontaneously with primary aliphatic amines or via cytochrome P450 catalysed reactions with secondary amines. In principle measurements of the excretion of the molecular nitrogen generated by these reactions could be used as an index of the levels of oxygenated nitrogen compounds acting as nitrosating agents. To test this idea, [15N2]urea (3 mmol) was administered orally to five patients infected with Helicobacter pylori (as diagnosed by the [13C]urea breath test) and to four healthy volunteers. All participants ingested 3-mmol sodium nitrate as a precursor for NA 5 min before the ingestion of the nitrogen tracer. During the test the participants breathed 100% oxygen to increase the sensitivity of detection of endogenous molecular nitrogen. After the administration of [15N2]urea, the patients with H. pylori showed significantly increased 15N enrichments of exhaled N2, expressed as δ value (‰), compared with healthy volunteers (patients: 3.5 ± 0.9 vs. volunteers: 1.3 ± 0.4; p < .05). We speculate that the endogenous production of molecular nitrogen is a protective process controlling the body NO and nitrite levels. The 15N breath technique allows the noninvasive estimation of the body nitrosation and could indicate the health risk, possibly the oxidative stress status, caused by highly reactive oxygenated nitrogen species and carbenium ion intermediates.  相似文献   

8.
Growth and nitrate reductase activity were measured in Paul's Scarlet rose cell suspensions, cultured in media purified from molybdenum and containing nitrate or urea as sole nitrogen source with or without added Mo. Urea could replace nitrate to yield 80% of the fresh weight in nitrate medium. Nitrate reductase activities were compared by in vivo and in vitro assays. The latter varied due to inactivation during extraction. Compared with activities in cells in complete NO3 - medium, activity in NO3 --Mo cells was reduced to 30% and, in urea-grown cells, to trace amounts. Increases in nitrate reductase activity were found when NO3 - alone was added to NO3 - or urea+Mo cultures. In NO3 --Mo cultures, Mo alone or with NO3 - caused a similar increase in activity, whereas urea-Mo cultures required both NO3 - and Mo for enzyme induction.Abbreviations FAD flavin adenine dinucleotide - Mo molybdenum - NADH reduced nicotinamide adenine dinucleotide - NO3 -+Mo standard MX1 culture medium - NO3 --Mo MX1 medium purified of Mo and used for continuous subculture with nitrate - NR nitrate reductase - PSR Paul's Scarlet rose - PVP polyvinylpyrrolidone - U urea - U+Mo MX1 medium containing urea instead of nitrate - U-Mo MX1 medium containing urea instead of nitrate and also purified of Mo  相似文献   

9.
Summary Four-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) saplings planted in pots with a sand and peat mix (11) were fertilized at the rate of 200 kg N/ha of (15NH2)2CO (U-15),15NH4NO3 (A-15) and NH4 15NO3(An-15). They were placed in a shadehouse and watered regularly to maintain soil moisture at field capacity over periods of one and two years. Quantity of15N in foliage generally increased from old to current growth, irrespective of the nitrogen source. Utilization of15N fertilizers by saplings after the first and second growing seasons following fertilization was greatest with nitrate labelled ammonium nitrate AN-15, and nearly equal for urea U-15 and ammonium labelled ammonium nitrate A-15. The soil immobilized more fertilizer nitrogen-15 from U-15 and A-15 than from AN-15. Data from the present study, in which leaching losses of fertilizer were minimized, demonstrated that in terms of nitrogen uptake by the saplings the nitrate fertilizer was superior to ammonium fertilizer.  相似文献   

10.
Abstract Net nitrate uptake rates were measured and the kinetics calculated in non-nodulated Pisum sativum L. cv. Marma and Lemna gibba L. adapted to constant relative rates of nitrate-N additions (RA), ranging from 0.03 to 0.27 d?1 for Pisum and from 0.05 to 0.40 d?1 for Lemna, Vmax of net nitrate uptake (measured in the range 10 to 100 mmol m?3 nitrate, i.e. ‘system I’) increased with RA in the growth limiting range but decreased when RA exceeded the relative growth rate (RGR), Km was not significantly related to changes in RA. On the basis of previous 13N-flux experiments, it is concluded that the differences in Vmax at growth limiting RA are attributable to differences in influx rates. Linear relationships between Vmax and tissue nitrogen concentrations were obtained in the growth limiting range for both species, and extrapolated intercepts relate well with the previously defined minimal nitrogen concentrations for plant growth (Oscarson, Ingemarsson & Larsson, 1989). Analysis of Vmax for net nitrate uptake on intact plant basis in relation to nitrogen demand during stable, nitrogen limited, growth shows an increased overcapacity at lower RA values in both species, which is largely explained by the increased relative root size at low RA. A balancing nitrate concentration, defined as the steady state concentration needed to sustain the relative rate of increase in plant nitrogen (RN), predicted by RA, was calculated for both species. In the growth limiting range, this value ranges from 3.5 mmol m?3 (RA 0.03 d?1) to 44 mmol m?3 (RA 0.21 d?1) for Pisum and from 0.2 mmol m?3 (RA 0.05 d?1) to 5.4 mmol m?3 (RA 0.03 d?1) for Lemna. It is suggested that this value can be used as a unifying measure of the affinity for nitrate, integrating the performance of the nitrate uptake system with nitrate flux and long term growth and demand for nitrogen.  相似文献   

11.
Epiphytic bromeliads have no contact with the pedosphere, so they need to draw their nutrients from the atmosphere as well as from the host tree and animal debris. Terrestrial bromeliads, like Ananas comosus, generally depend on the soil as their main nutrient source. The aim of this study was to investigate and compare some aspects of the nitrogen metabolism of two bromeliads with different growth habits: Ananas comosus, a terrestrial bromeliad, and Vriesea gigantea, an epiphytic tank bromeliad. Nitrogen-starved plants were grown in vitro for 3, 7, 15, 30, and 60 days, either with 5 mmol L−1 ammonium [(NH4)2SO4] or urea as the sole nitrogen source. When NH4+ was supplied to the plants, it stimulated a faster increase of chlorophyll content in A. comosus than in V. gigantea. In the presence of urea, after 15 days of the plants in culture, there was a significant increase in tissue free-NH4+ and total amino acids for V. gigantea only. V. gigantea presented a higher level of total free amino acids than A. comosus when nitrogen was supplied to the plants. Asparagine was the main amino acid accumulated in both bromeliads when plants were transferred to the medium with nitrogen. When the ratio of the main individual free amino acids between the bromeliads grown in NH4+ and urea was compared, values such as 7.2 for asparagine, 5.3 for glutamate, and 1.8 for aspartate in A. comosus, and values such as 2.3 for asparagine, 1.1 for glutamate and 0.7 for aspartate in V. gigantea were observed, demonstrating that the last is more efficient in assimilating urea. The results prompted us to support the idea that V. gigantea, an epiphytic tank bromeliad, is better adapted to absorb and assimilate organic nitrogen, such as urea, while A. comosus, a terrestrial plant, is better adapted to inorganic nitrogen forms, such as ammonium. The natural exposure of tank bromeliads to urea is discussed in the paper.  相似文献   

12.
Activities of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.3) were measured in cotyledons of sunflower (Helianthus annuus L. cv Peredovic) seedlings during germination and early growth under various external nitrogen sources. The presence of NO 3 - in the medium promoted a gradual increase in the levels of NR and NiR activities during the first 7 d of germination. Neither NR nor NiR activities were increased in a nitrogen-free medium or in media with either NH 4 + or urea as nitrogen sources. Moreover, the presence of NH 4 + did not abolish the NO 3 - -dependent appearance of NR and NiR activities. The increase of NR activity was impaired both by cycloheximide and chloramphenicol, which indicates that both cytoplasmic 80S and plastidic 70S ribosomes are involved in the synthesis of the NR molecule. By contrast, the appearance of NiR activity was only inhibited by cycloheximide, indicating that NiR seems to be exclusively synthesized on the cytoplasmic 80S ribosomes. Glutamine-synthetase activity was also strongly increased by external NO 3 - but not by NH 4 + or urea. The appearance of GS activity was more efficiently suppressed by cycloheximide than chloramphenicol. This indicates that GS is mostly synthesized in the cytoplasm. The cotyledons of the dry seed contain high levels of GDH activity which decline during germination independently of the presence or absence of a nitrogen source. Cycloheximide, but not chloramphenicol, greatly prevented the decrease of GDH activity.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

13.
The growth and survival of juvenile Haliotis rubra, when fed with the diatom Navicula sp. cultured in f/2 medium containing combined nitrogen at 24.71 mg NO3-N L–1 (high), 12.35 mg NO3-N L–1 (standard) or 2.47 mg NO3-N L–1 (low), were compared in a 33-day trial. The alga in the low nitrogen medium contained 37% less total amino acid than that in the high and standard nitrogen media. There was a slightly greater reduction in essential amino acids (40%) compared to non-essential amino acids (35%). Juvenile abalone feeding on Navicula grown in medium with low nitrate and lower total amino acid content grew more slowly than when fed on the same species grown in standard or higher nitrogen medium with a higher amino acid content. The growth rate of juveniles was highest (43 m d–1) in the high nitrate treatment followed (40 m d–1) by the standard nitrate treatment and lowest (31 m d–1) in the low nitrate treatment. The survival of the juveniles was also effected by the diet. Survival was better in the high and standard nitrogen media (88%) than the low nitrogen medium (75%). The results suggest that in order to achieve uniformity in nutritional quality of diatoms and good growth of abalone juveniles in commercial abalone nurseries, the nitrogen concentration in tanks should be monitored and additional nitrate added to provide an optimum concentration of between 2 and 12 mg NO3-N L–1.  相似文献   

14.
Providencia rettgeri strain YL was found to be efficient in heterotrophic nitrogen removal under aerobic conditions. Maximum removal of NH4 +–N occurred under the conditions of pH 7 and supplemented with glucose as the carbon source. Inorganic ions such as Mg2+, Mn2+, and Zn2+ largely influenced the growth and nitrogen removal efficiency. A quantitative detection of nitrogen gas by gas chromatography was conducted to evaluate the nitrogen removal by strain YL. From the nitrogen balance during heterotrophic growth with 180 mg/l of NH4 +–N, 44.5% of NH4 +–N was in the form of N2 and 49.7% was found in biomass, with only a trace amount of either nitrite or nitrate. The utilization of nitrite and nitrate during the ammonium removal process demonstrated that the nitrogen removal pathway by strain YL was heterotrophic nitrification-aerobic denitrification. A further enzyme assay of nitrate reductase and nitrite reductase activity under the aerobic condition confirmed this nitrogen removal pathway.  相似文献   

15.
Observations of near-bottom populations of Karenia brevis suggest that these cells may derive nutrients from the sediment–water interface. Cells undergoing a metabolic-mediated migration may be in close proximity to enhanced concentrations of nutrients associated with the sediment during at least a fraction of their diel cycle. In this study, the growth, uptake and assimilation rates of ammonium, nitrate, and urea by K. brevis were examined on a diel basis to better understand the potential role of these nutrients in the near-bottom ecology of this species. Three strains of K. brevis, C6, C3, and CCMP 2229, were grown under 12:12 light dark cycle under 30 μmol photons m−2 s−1 delivered to the surface plain of batch cultures. Nitrogen uptake was evaluated using 15N tracer techniques and trichloroacetic acid extraction was used to evaluate the quantity of nitrogen (N) assimilated into cell protein. Growth rates ranged from a low of 0.12 divisions day−1 for C6 and C3 grown on nitrate to a high of 0.18 divisions day−1 for C3 grown on urea. Diurnal maximum uptake rates, ρmax, varied from 0.41 pmol-N cell−1 h−1 for CCMP 2229 grown on nitrate, to 1.29 pmol-N cell−1 h−1 for CCMP 2229 grown on urea. Average nocturnal uptake rates were 29% of diurnal rates for nitrate, 103% of diurnal uptake rates for ammonium and 56% of diurnal uptake rates for urea. Uptake kinetic parameters varied between substrates, between strains and between day and night measurements. Highest maximum uptake rates were found for urea for strains CCMP2229 and C3 and for ammonium for strain C6. Rates of asmilation into protein also varied day and night, but overall were highest for urea. The comparison of maximal uptake rates as well as assimilation efficiencies indicate that ammonium and urea are utilized (taken up and assimilated) more than twice was fast as nitrate on a diel basis.  相似文献   

16.
17.
Mass culture of microalgae is a potential alternative to cultivation of terrestrial crops for bioenergy production. However, microalgae require nitrogen fertiliser in quantities much higher than plants, and this has important consequences for the energy balance of these systems. The effect of nitrogen fertiliser supplied to microalgal bubble-column photobioreactor cultures was investigated using different nitrogen sources (nitrate, urea, ammonium) and culture conditions (air, 12% CO2). In 20 L cultivations, maximum biomass productivity for Chlorella vulgaris cultivated using nitrate and urea was 0.046 and 0.053 g L−1 day−1, respectively. Maximum biomass productivity for Dunaliella tertiolecta cultivated using nitrate, urea and ammonium was 0.033, 0.038 and 0.038 g L−1 day−1, respectively. In intensive bubble-column photobioreactors using 12% CO2, maximum productivity reached 0.60 and 0.83 g L−1 day−1 for C. vulgaris and D. tertiolecta, respectively. Recycling of nitrogen within the photobioreactor system via algal exudation of nitrogenous compounds and bacterial activity was identified as a potentially important process. The energetic penalty incurred by supply of artificial nitrogen fertilisers, phosphorus, power and CO2 to microalgal photobioreactors was investigated, although analysis of all energy burdens from biomass production to usable energy carriers was not conducted. After subtraction of the power, nitrogen and phosphorus energy burdens, maximum net energy ratios for C. vulgaris and D. tertiolecta cultivated in bubble columns were 1.82 and 2.10. Assuming CO2 was also required from a manufactured source, the net energy ratio decreased to 0.09 and 0.11 for C. vulgaris and D. tertiolecta, so that biomass production in this scenario was unsustainable. Although supply of nitrogen is unlikely to be the most energetically costly factor in sparged photobioreactor designs, it is still a very significant penalty. There is a need to optimise both cultivation strategies and recycling of nitrogen in order to improve performance. Data are supported by measurements including biochemical properties (lipid, protein, heating value) and bacterial number by epifluorescence microscopy.  相似文献   

18.
Although nitrate is a macronutrient and can serve as good nitrogen source for many species of phytoplankton, high nitrate concentrations do not benefit the growth of phytoplankton. We hypothesise that algae cultured under high nitrate concentrations can accumulate intracellular nitrite, which is produced by nitrate reductase (NR) and can inhibit the growth of algae. To assess the validity of this hypothesis, Microcystis aeruginosa was grown under different nitrate concentrations from 3.57 to 21.43 mM in low CO2 and high CO2 conditions for 15 days. We observed that, with increasing nitrate concentrations, the intracellular nitrite concentrations of the alga increased and the growth rates and photosynthesis declined. When grown under high CO2 conditions, M. aeruginosa showed lower intracellular nitrite concentrations and higher growth rates and \textP\textm\textchla {\text{P}}_{\text{m}}^{{\text{chl}}a} , \textR\textd\textchla {\text{R}}_{\text{d}}^{{\text{chl}}a} , αchla than under low CO2 conditions. These results suggest that the accumulation of intracellular nitrite could be the cause of inhibition of algal growth under high nitrate concentrations.  相似文献   

19.
Embryogenic callus from Citrus sinensis (L.) Osbeck cv. Hamlin was cultured for 28 days on 20 media arranged in a 5×2×2 factorial varying in the ratio of nitrate to ammonium nitrogen, total inorganic nitrogen, and benzyladenine. Fresh weight increase of callus and final medium pH were significantly affected by total inorganic nitrogen and the ratio of nitrate to ammonium. The nitrate to ammonium ratio accounted for 55% of the variation in the fresh weight increase of the callus and 93% of the variation in the final medium pH. Varying the NO3 -:NH4 - ratio provided adequate pH control.Abbreviation BA benzyladenine  相似文献   

20.
Salinity and nitrogen are two important environmental factors that affect the distribution of halophytes in their natural saline habitats. Seeds of the euhalophyte Suaeda salsa L. were harvested from plants that had been treated with 1 or 500 mm NaCl combined with 0.5 or 5 mm NO3?‐N (nitrate) for 115 days in a glasshouse. Germination was evaluated under different concentrations of NaCl and nitrate. Plants exposed to high salinity (500 mm ) and low nitrate (0.5 mm ) tended to produce heavy seeds. Either high salinity (500 mm ) or high nitrate (5 mm ) increased the brown/black seed ratio. The concentrations of Na+, K+, and Cl? were higher in brown than in black seeds, and NO3? concentrations were higher in black than in brown seeds, regardless of NaCl and nitrate treatments during plant culture. Regardless of NaCl and nitrate concentrations during germination, seeds from plants grown with 0.5 mm nitrate generally germinated more rapidly than seeds from plants grown with 5 mm nitrate, and the difference was greater for black than for brown seeds. Exogenous nitrate during germination enhanced the germination of brown seeds less than that of black seeds. Producing more brown seeds and heavy black or brown seeds appears to be an adaptation of S. suaeda to saline environments. Producing more black seeds, which tend to remain dormant, should reduce competition for nitrogen and appears to be an adaptation to nitrogen‐limited environments. In conclusion, nitrate provided exogenously or by mother plants to black seeds may act as a signal molecule that enhances the germination of black S. suaeda seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号