首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

2.
Of four chlorinated guaiacols, tetrachloroguaiacol at 62 M inhibited acetate methanogenesis, the strongest decreasing activity by 50%. 4,5,6-Trichloroguaiacol, 4,5-dichloroguaiacol, and 4-chloroguaiacol showed 50% inhibition at 0.13, 0.32, and 1.50 mM, respectively. Degradation test results of volatile fatty acids (acetic, propionic, and butyric acid) by anaerobic digester sludge (stored 5 weeks) indicated that syntrophic butyrate degraders of this sludge were more sensitive to tetrachloroguaiacol than acetoclastic methanogens and syntrophic propionate degraders.  相似文献   

3.
Anaerobic oxidation of volatile fatty acids (VFAs) as the key intermediates is restricted thermodynamically. Presently, enriched acetogenic and methanogenic cultures were used for syntrophic anaerobic digestion of VFAs in an upflow anaerobic sludge bed reactor fed with acetic, propionic, and butyric acids at maximum concentrations of 5.0, 3.0, and 4.0 g/L, respectively. Interactive effects of propionate, butyrate and acetate were analyzed. Hydraulic retention time (HRT) and acetate oxidizing syntrophs and methanogen (hydrogenotrophs) to syntrophic bacteria (propionate- and butyrate-oxidizing bacteria) population ratio (M/A) were investigated as key microbiological and operating variables of VFA anaerobic degradations. M/A did not affect the size distribution and had little effect on extracellular polymer contents of the granules. Granular sludge with close spatial microbial proximity enhanced syntrophic degradation of VFAs compared to other cultures, such as suspended cultures. Optimum conditions were found to be propionate = 1.93 g/L, butyrate = 2.15 g/L, acetate = 2.50 g/L, HRT = 22 h, and M/A = 2.5 corresponding to maximum VFA removal and biogas production rate. Results of verification experiments and predicted values from fitted correlations were in close agreement at the 95% confidence interval. Granules seemed to be smaller particles and less stable in construction with an irregular fractured surface compared to the original granules.  相似文献   

4.
The effects of acetate, propionate, and butyrate on the anaerobic thermophilic conversion of propionate by methanogenic sludge and by enriched propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum delta H were studied. The methanogenic sludge was cultivated in an upflow anaerobic sludge bed (UASB) reactor fed with propionate (35 mM) as the sole substrate for a period of 80 days. Propionate degradation was shown to be severely inhibited by the addition of 50 mM acetate to the influent of the UASB reactor. The inhibitory effect remained even when the acetate concentration in the effluent was below the level of detection. Recovery of propionate oxidation occurred only when acetate was omitted from the influent medium. Propionate degradation by the methanogenic sludge in the UASB reactor was not affected by the addition of an equimolar concentration (35 mM) of butyrate to the influent. However, butyrate had a strong inhibitory effect on the growth of the propionate-oxidizing enrichment culture. In that case, the conversion of propionate was almost completely inhibited at a butyrate concentration of 10 mM. However, addition of a butyrate-oxidizing enrichment culture abolished the inhibitory effect, and propionate oxidation was even stimulated. All experiments were conducted at pH 7.0 to 7.7. The thermophilic syntrophic culture showed a sensitivity to acetate and propionate similar to that of mesophilic cultures described in the literature. Additions of butyrate or acetate to the propionate medium had no effect on the hydrogen partial pressure in the biogas of an UASB reactor, nor was the hydrogen partial pressure in propionate-degrading cultures affected by the two acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

6.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   

7.
The influence of high concentrations of pentachlorophenol (PCP) and readily metabolizable carbon on the activity and viability of a PCP-degrading Flavobacterium sp. was examined in a mineral salts medium. Lags preceding PCP removal by glutamate-grown Flavobacterium cells were greatly attenuated by the addition of glutamate, aspartate, succinate, acetate, glucose, or cellobiose. The effect of these supplementary carbon sources on the apparent lag was not mediated entirely through the stimulation of growth since PCP metabolism accompanied the onset of growth. The specific activity of PCP-degrading cells in the absence of supplementary carbon was 1.51 x 10(-13) +/- 0.08 x 10(-13) g of PCP per cell per h and in the presence of supplementary carbon was 0.92 x 10(-13) +/- 0.09 x 10(-13) g of PCP per cell per h. Glutamate in combination with glucose or cellobiose partially repressed PCP metabolism. PCP removal by PCP-induced, glutamate-grown cells suspended in the presence of 4 g of sodium glutamate per liter was sensitive to shock loads of PCP, with a Ki of about 86.8 micrograms/ml. Subsequent removal rates, however, were more resistant to PCP. Optimal stimulation of PCP removal by sodium glutamate required 3.0 g/liter, about the same concentration as that which saturated growth in the absence of PCP. PCP removal rates decayed within minutes following the transfer of PCP-induced, glutamate-grown cells to media containing PCP without supplementary carbon, and increasing PCP concentrations accelerated the decay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
E Topp  R L Crawford    R S Hanson 《Applied microbiology》1988,54(10):2452-2459
The influence of high concentrations of pentachlorophenol (PCP) and readily metabolizable carbon on the activity and viability of a PCP-degrading Flavobacterium sp. was examined in a mineral salts medium. Lags preceding PCP removal by glutamate-grown Flavobacterium cells were greatly attenuated by the addition of glutamate, aspartate, succinate, acetate, glucose, or cellobiose. The effect of these supplementary carbon sources on the apparent lag was not mediated entirely through the stimulation of growth since PCP metabolism accompanied the onset of growth. The specific activity of PCP-degrading cells in the absence of supplementary carbon was 1.51 x 10(-13) +/- 0.08 x 10(-13) g of PCP per cell per h and in the presence of supplementary carbon was 0.92 x 10(-13) +/- 0.09 x 10(-13) g of PCP per cell per h. Glutamate in combination with glucose or cellobiose partially repressed PCP metabolism. PCP removal by PCP-induced, glutamate-grown cells suspended in the presence of 4 g of sodium glutamate per liter was sensitive to shock loads of PCP, with a Ki of about 86.8 micrograms/ml. Subsequent removal rates, however, were more resistant to PCP. Optimal stimulation of PCP removal by sodium glutamate required 3.0 g/liter, about the same concentration as that which saturated growth in the absence of PCP. PCP removal rates decayed within minutes following the transfer of PCP-induced, glutamate-grown cells to media containing PCP without supplementary carbon, and increasing PCP concentrations accelerated the decay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Degradation of propionate and butyrate in whole and disintegrated granules from a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor fed with acetate, propionate, and butyrate as substrates was examined. The propionate and butyrate degradation rates in whole granules were 1.16 and 4.0 mumol/min/g of volatile solids, respectively, and the rates decreased 35 and 25%, respectively, after disintegration of the granules. The effect of adding different hydrogen-oxidizing bacteria (both sulfate reducers and methanogens), some of which used formate in addition to hydrogen, to disintegrated granules was tested. Addition of either Methanobacterium thermoautotrophicum delta H, a hydrogen-utilizing methanogen that does not use formate, or Methanobacterium sp. strain CB12, a hydrogen- and formate-utilizing methanogen, to disintegrated granules increased the degradation rate of both propionate and butyrate. Furthermore, addition of a thermophilic sulfate-reducing bacterium (a Desulfotomaculum sp. isolated in our laboratory) to disintegrated granules improved the degradation of both substrates even more than the addition of methanogens. By monitoring the hydrogen partial pressure in the cultures, a correlation between the hydrogen partial pressure and the degradation rate of propionate and butyrate was observed, showing a decrease in the degradation rate with increased hydrogen partial pressure. No significant differences in the stimulation of the degradation rates were observed when the disintegrated granules were supplied with methanogens that utilized hydrogen only or hydrogen and formate. This indicated that interspecies formate transfer was not important for stimulation of propionate and butyrate degradation.  相似文献   

10.
A laboratory-scale anaerobic sequencing batch reactor (ASBR) was operated using a glucose-based synthetic wastewater to study the effects of tylosin, a macrolide antimicrobial commonly used in swine production, on treatment performance. The experimental period was divided into three consecutive phases with different influent tylosin concentrations (0, 1.67, and 167 mg/L). The addition of 1.67 mg/L tylosin to the reactor had negligible effects on the overall treatment performance, that is, total methane production and effluent chemical oxygen demand did not change significantly (P < 0.05), yet analyses of individual ASBR cycles revealed a decrease in the rates of both methane production and propionate uptake after tylosin was added. The addition of 167 mg/L tylosin to the reactor resulted in a gradual decrease in methane production and the accumulation of propionate and acetate. Subsequent inhibition of methanogenesis was attributed to a decrease in the pH of the reactor. After the addition of 167 mg/L tylosin to the reactor, an initial decrease in the rate of glucose uptake during the ASBR cycle followed by a gradual recovery was observed. In batch tests, the specific biogas production with the substrate butyrate was completely inhibited in the presence of tylosin. This study indicated that tylosin inhibited propionate- and butyrate-oxidizing syntrophic bacteria and fermenting bacteria resulting in unfavorable effects on methanogenesis.  相似文献   

11.
The co-immobilization and the culture of anaerobic and aerobic communities was tested for the mineralization of 2,4,6-trichlorophenol (2,4,6-TCP). At first, the anaerobic microorganisms (aggregated into granules) were cultivated in an upflow anaerobic sludge blanket (UASB) reactor, in a continuous mode, with glucose, propionate, acetate (COD loading rate = 0.5-2.0 g COD/l per day, ratio 1:1:1) and 2,4,6-TCP (2,4,6-TCP loading rate = 25-278 micromol/l per day) as substrates. 2,4,6-TCP was degraded into 2,4-DCP and 4-CP, but it was not mineralized because of the low degradation rates of 4-CP. Furthermore, the highest loading rates of 2,4,6-TCP (>126 micromol/l per day) caused the inhibition of the strains degrading the propionate. The granules were therefore tested in association with the aerobic community. They were immobilized in kappa-carrageenan/gelatin [2% (w/w) of each polymer] gel beads and cultivated in a reactor, on their own (to test the influence of the gel), and then with the aerobic community, under anaerobic and air-limited conditions, respectively. The results showed that (1) the gel did not influence the activity of the granules, (2) the anaerobic and aerobic communities could be easily co-immobilized in gel beads and cultivated in a reactor, (3) the mineralization of 2,4,6-TCP (2,4,6-TCP loading rate = 10-506 micromol/l per day), its intermediates of degradation and the other substrates [glucose + acetate + propionate (ratio 1:1:1) = COD loading rate = 500 mg COD/l per day] could be obtained under air-limited conditions if the culture parameters were strictly controlled [airflow = 36-48 vvd (volume of air/volume of liquid in the reactor per day), pH value at around 7.5]. Finally, the gel did not retain its structure during the whole culture (263 days) in the air-limited reactor, but the anaerobic and aerobic communities retained their activities and worked together for the mineralization.  相似文献   

12.
The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S0) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.  相似文献   

13.
W M Wu  R F Hickey    J G Zeikus 《Applied microbiology》1991,57(12):3438-3449
Granules from an upflow anaerobic sludge blanket system treating a brewery wastewater that contained mainly ethanol, propionate, and acetate as carbon sources and sulfate (0.6 to 1.0 mM) were characterized for their physical and chemical properties, metabolic performance on various substrates, and microbial composition. Transmission electron microscopic examination showed that at least three types of microcolonies existed inside the granules. One type consisted of Methanothrix-like rods with low levels of Methanobacterium-like rods; two other types appeared to be associations between syntrophic-like acetogens and Methanobacterium-like organisms. The granules were observed to be have numerous vents or channels on the surface that extended into the interior portions of the granules that may be involved in release of gas formed within the granules. The maximum substrate conversion rates (millimoles per gram of volatile suspended solids per day) at 35 degrees C in the absence of sulfate were 45.1, 8.04, 4.14, and 5.75 for ethanol, acetate, propionate, and glucose, respectively. The maximum methane production rates (millimoles per gram of volatile suspended solids per day) from H2-CO2 and formate were essentially equal for intact granules (13.7 and 13.5) and for physically disrupted granules (42 and 37). During syntrophic ethanol conversion, both hydrogen and formate were formed by the granules. The concentrations of these two intermediates were maintained at a thermodynamic equilibrium, indicating that both are intermediate metabolites in degradation. Formate accumulated and was then consumed during methanogenesis from H2-CO2. Higher concentrations of formate accumulated in the absence of sulfate than in the presence of sulfate. The addition of sulfate (8 to 9 mM) increased the maximum substrate degradation rates for propionate and ethanol by 27 and 12%, respectively. In the presence of this level of sulfate, sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, and acetate, but ethanol and propionate were converted via sulfate reduction by approximately 28 and 60%, respectively. In the presence of 2.0 mM molybdate, syntrophic propionate and ethanol conversion by the granules was inhibited by 97 and 29%, respectively. The data show that in this granular microbial consortium, methanogens and sulfate-reducing bacteria did not compete for common substrates. Syntrophic propionate and ethanol conversion was likely performed primarily by sulfate-reducing bacteria, while H2, formate, and acetate were consumed primarily by methanogens.  相似文献   

14.
Granules from an upflow anaerobic sludge blanket system treating a brewery wastewater that contained mainly ethanol, propionate, and acetate as carbon sources and sulfate (0.6 to 1.0 mM) were characterized for their physical and chemical properties, metabolic performance on various substrates, and microbial composition. Transmission electron microscopic examination showed that at least three types of microcolonies existed inside the granules. One type consisted of Methanothrix-like rods with low levels of Methanobacterium-like rods; two other types appeared to be associations between syntrophic-like acetogens and Methanobacterium-like organisms. The granules were observed to be have numerous vents or channels on the surface that extended into the interior portions of the granules that may be involved in release of gas formed within the granules. The maximum substrate conversion rates (millimoles per gram of volatile suspended solids per day) at 35 degrees C in the absence of sulfate were 45.1, 8.04, 4.14, and 5.75 for ethanol, acetate, propionate, and glucose, respectively. The maximum methane production rates (millimoles per gram of volatile suspended solids per day) from H2-CO2 and formate were essentially equal for intact granules (13.7 and 13.5) and for physically disrupted granules (42 and 37). During syntrophic ethanol conversion, both hydrogen and formate were formed by the granules. The concentrations of these two intermediates were maintained at a thermodynamic equilibrium, indicating that both are intermediate metabolites in degradation. Formate accumulated and was then consumed during methanogenesis from H2-CO2. Higher concentrations of formate accumulated in the absence of sulfate than in the presence of sulfate. The addition of sulfate (8 to 9 mM) increased the maximum substrate degradation rates for propionate and ethanol by 27 and 12%, respectively. In the presence of this level of sulfate, sulfate-reducing bacteria did not play a significant role in the metabolism of H2, formate, and acetate, but ethanol and propionate were converted via sulfate reduction by approximately 28 and 60%, respectively. In the presence of 2.0 mM molybdate, syntrophic propionate and ethanol conversion by the granules was inhibited by 97 and 29%, respectively. The data show that in this granular microbial consortium, methanogens and sulfate-reducing bacteria did not compete for common substrates. Syntrophic propionate and ethanol conversion was likely performed primarily by sulfate-reducing bacteria, while H2, formate, and acetate were consumed primarily by methanogens.  相似文献   

15.
Support surfaces can have selective action which determines the relative quantities of acetogens (propionate and butyrate degraders) and methanogens (acetate degraders) immobilized in a symbiotic biofilm. The preference of the bacteria for hydrophilic substrata as their immobilization supports is in the order; butyrate degraders, acetate degraders followed by propionate degraders.  相似文献   

16.
Summary Scanning electron microphotographs from the biofilm of a pilot scale anaerobic fluid-ized-bed reactor fed with acetate, propionate, and butyrate as carbon sources showed a predominance of filamentous organisms resembling Methanothrix sp. which could be isolated as an al-most pure culture as well as a Methanosarcina strain. Three syntrophic cultures, enriched in the medium of Boone and Xun, contained four or five microscopically distinguishable microorganisms, among them Methanospirillum sp., Methanothrix sp., Methanosarcina sp., and rods of acetogenic bacteria degrading propionate or butyrate effectively.  相似文献   

17.
In this work, a strain of anaerobic pentachlorophenol (PCP) degrader, Desulfitobacterium frappieri PCP-1, was used to augment a mixed bacterial community of an anaerobic upflow sludge bed reactor degrading PCP. To estimate the efficiency of augmentation, the population of PCP-1 in the reactor was enumerated by a competitive PCR technique. The PCP-1 strain appeared to compete well with other microorganisms of the mixed bacterial community, with its population increasing from 10(6) to 10(10) cells/g of volatile suspended solids within a period of 70 days. Proliferation of strain PCP-1 allowed for a substantial increase of the volumetric PCP load from 5 to 80 mg/liter of reaction volume/day. A PCP removal efficiency of 99% and a dechlorination efficiency of not less than 90.5% were observed throughout the experiment, with 3-Cl-phenol and phenol being observable dechlorination intermediates.  相似文献   

18.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

19.
Acetate production during anaerobic sludge treatment has significant economic and environmental benefits. In this study, trophic links between syntrophic acetogens and homoacetogens in the anaerobic acidogenic fermentation of sewage sludge were investigated using methanogenic inhibitor 2-bromoethanesulfonate (BES) to block the methanogenesis pathway and butyrate to enhance syntrophic acetogenesis. The Gibbs free energies (ΔG) of the butyrate-degrading and homoacetogenic processes were close to the thermodynamic threshold of the reaction activity (−15 kJ/mol). In addition, microbial quantification analysis revealed that the growth of syntrophic acetogenic bacteria and homoacetogens in the treatment incubations was higher than that of the control. The results indicated that hydrogen-producing butyrate degraders are stimulated with homoacetogens when methanogenesis was specifically inhibited.  相似文献   

20.
Two types of methanogenic granules capable of high chemical oxygen demand removal rates were developed in laboratory-scale upflow reactors at 35° C. One granule type (R-granules) had a rod-type Methanothrix-like species as the predominant species whereas the other (F-granules) had a filament-type M. soehngenii-like acetate-utilizer as the predominant species. These two types of granules were compared in terms of operational performance, physical-chemical characteristics and microbial population. The R-granules had a higher density [65–70 vs 39–43 g suspended solids (SS)/l], specific gravity (1.03 vs 1.01) and specific volumetric methane production rate (180 vs 120 l CH4/l granules per day) than the F-granules. Acetate, propionate and butyrate degraders in both types of granules had similar specific growth rates. The most probable number enumeration indicated that both types of granule had the same population levels (cells/g SS) in terms of methanogens (H2-CO2-, formate- and acetate-utilizing) and syntrophic acetogens. Hydrolytic-fermentative bacteria were present in greater number in the F-granules than in the R-granules. The R-granules had a higher cell density than the F-granules. The differences in operational performance were due mainly to their different microbial composition, especially the predominant acetate-utilizing methanogens in the granules. The long-filamentous M. soehngenii-like rods in the F-granules appeared to be responsible for their lower density and large-sized granules. Correspondence to: J. G. Zeikus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号