首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Proper formation of the musculoskeletal system requires the coordinated development of the muscle, cartilage and tendon lineages arising from the somitic mesoderm. During early somite development, muscle and cartilage emerge from two distinct compartments, the myotome and sclerotome, in response to signals secreted from surrounding tissues. As the somite matures, the tendon lineage is established within the dorsolateral sclerotome, adjacent to and beneath the myotome. We examine interactions between the three lineages by observing tendon development in mouse mutants with genetically disrupted muscle or cartilage development. Through analysis of embryos carrying null mutations in Myf5 and Myod1, hence lacking both muscle progenitors and differentiated muscle, we identify an essential role for the specified myotome in axial tendon development, and suggest that absence of tendon formation in Myf5/Myod1 mutants results from loss of the myotomal FGF proteins, which depend upon Myf5 and Myod1 for their expression, and are required, in turn, for induction of the tendon progenitor markers. Our analysis of Sox5/Sox6 double mutants, in which the chondroprogenitors are unable to differentiate into cartilage, reveals that the two cell fates arising from the sclerotome, axial tendon and cartilage are alternative lineages, and that cartilage differentiation is required to actively repress tendon development in the dorsolateral sclerotome.  相似文献   

6.
7.
We addressed the potential role of cell-laminin interactions during epaxial myotome formation in the mouse embryo. Assembly of the myotomal laminin matrix occurs as epaxial myogenic precursor cells enter the myotome. Most Myf5-positive and myogenin-negative myogenic precursor cells localise near assembled laminin, while myogenin-expressing cells are located either away from this matrix or in areas where it is being assembled. In Myf5(nlacZ/nlacZ) (Myf5-null) embryos, laminin, collagen type IV and perlecan are present extracellularly near myogenic precursor cells, but do not form a basement membrane and cells are not contained in the myotomal compartment. Unlike wild-type myogenic precursor cells, Myf5-null cells do not express the alpha6beta1 integrin, a laminin receptor, suggesting that integrin alpha6beta1-laminin interactions are required for myotomal laminin matrix assembly. Blocking alpha6beta1-laminin binding in cultured wild-type mouse embryo explants resulted in dispersion of Myf5-positive cells, a phenotype also seen in Myf5(nlacZ/nlacZ) embryos. Furthermore, inhibition of alpha6beta1 resulted in an increase in Myf5 protein and ectopic myogenin expression in dermomyotomal cells, suggesting that alpha6beta1-laminin interactions normally repress myogenesis in the dermomyotome. We conclude that Myf5 is required for maintaining alpha6beta1 expression on myogenic precursor cells, and that alpha6beta1 is necessary for myotomal laminin matrix assembly and cell guidance into the myotome. Engagement of laminin by alpha6beta1 also plays a role in maintaining the undifferentiated state of cells in the dermomyotome prior to their entry into the myotome.  相似文献   

8.
Sonic hedgehog (Shh), produced by the notochord and floor plate, is proposed to function as an inductive and trophic signal that controls somite and neural tube patterning and differentiation. To investigate Shh functions during somite myogenesis in the mouse embryo, we have analyzed the expression of the myogenic determination genes, Myf5 and MyoD, and other regulatory genes in somites of Shh null embryos and in explants of presomitic mesoderm from wild-type and Myf5 null embryos. Our findings establish that Shh has an essential inductive function in the early activation of the myogenic determination genes, Myf5 and MyoD, in the epaxial somite cells that give rise to the progenitors of the deep back muscles. Shh is not required for the activation of Myf5 and MyoD at any of the other sites of myogenesis in the mouse embryo, including the hypaxial dermomyotomal cells that give rise to the abdominal and body wall muscles, or the myogenic progenitor cells that form the limb and head muscles. Shh also functions in somites to establish and maintain the medio-lateral boundaries of epaxial and hypaxial gene expression. Myf5, and not MyoD, is the target of Shh signaling in the epaxial dermomyotome, as MyoD activation by recombinant Shh protein in presomitic mesoderm explants is defective in Myf5 null embryos. In further support of the inductive function of Shh in epaxial myogenesis, we show that Shh is not essential for the survival or the proliferation of epaxial myogenic progenitors. However, Shh is required specifically for the survival of sclerotomal cells in the ventral somite as well as for the survival of ventral and dorsal neural tube cells. We conclude, therefore, that Shh has multiple functions in the somite, including inductive functions in the activation of Myf5, leading to the determination of epaxial dermomyotomal cells to myogenesis, as well as trophic functions in the maintenance of cell survival in the sclerotome and adjacent neural tube.  相似文献   

9.
Pioneer myoblasts generate the first myotomal fibers and act as a scaffold to pattern further myotome development. From their origin in the medial epithelial somite, they dissociate and migrate towards the rostral edge of each somite, from which differentiation proceeds in both rostral-to-caudal and medial-to-lateral directions. The mechanisms underlying formation of this unique wave of pioneer myofibers remain unknown. We show that rostrocaudal or mediolateral somite inversions in avian embryos do not alter the original directions of pioneer myoblast migration and differentiation into fibers, demonstrating that regulation of pioneer patterning is somite-intrinsic. Furthermore, pioneer myoblasts express Robo2 downstream of MyoD and Myf5, whereas the dermomyotome and caudal sclerotome express Slit1. Loss of Robo2 or of sclerotome-derived Slit1 function perturbed both directional cell migration and fiber formation, and their effects were mediated through RhoA. Although myoblast specification was not affected, expression of the intermediate filament desmin was reduced. Hence, Slit1 and Robo2, via RhoA, act to pattern formation of the pioneer myotome through the regulation of cytoskeletal assembly.  相似文献   

10.
11.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

12.
The Fgf4 gene encodes an important signaling molecule which is expressed in specific developmental stages, including the inner cell mass of the blastocyst, the myotomes, and the limb bud apical ectodermal ridge (AER). Using a transgenic approach, we previously identified overlapping but distinct enhancer elements in the Fgf4 3' untranslated region necessary and sufficient for myotome and AER expression. Here we have investigated the hypothesis that Fgf4 is a target of myogenic bHLH factors. We show by mutational analysis that a conserved E box located in the Fgf4 myotome enhancer is required for Fgf4-lacZ expression in the myotomes. A DNA probe containing the E box binds MYF5, MYOD, and bHLH-like activities from nuclear extracts of differentiating C2-7 myoblast cells, and both MYF5 and MYOD can activate gene expression of reporter plasmids containing the E-box element. Analyses of Myf5 and MyoD knockout mice harboring Fgf4-lacZ transgenes show that Myf5 is required for Fgf4 expression in the myotomes, while MyoD is not, but MyoD can sustain Fgf4 expression in the ventral myotomes in the absence of Myf5. Sonic hedgehog (Shh) signaling has been shown to have an essential inductive function in the expression of Myf5 and MyoD in the epaxial myotomes, but not in the hypaxial myotomes. We show here that expression of an Fgf4-lacZ transgene in Shh-/- embryos is suppressed not only in the epaxial but also in the hypaxial myotomes, while it is maintained in the AER. This suggests that Shh mediates Fgf4 activation in the myotomes through mechanisms independent of its role in the activation of myogenic factors. Thus, a cascade of events, involving Shh and bHLH factors, is responsible for activating Fgf4 expression in the myotomes in a spatial- and temporal-specific manner.  相似文献   

13.
14.
The first wave of myoblasts which constitutes the post-mitotic myotome stems from the medial epithelial somite. Whereas medial pioneers extend throughout the entire mediolateral myotome at cervical and limb levels, at flank regions they are complemented laterally by a population of early myoblasts emerging from the lateral epithelial somite. These myoblasts delaminate underneath the nascent dermomyotome and become post-mitotic. They are Myf5-positive but express MyoD and desmin only a day later while differentiating into fibers. Overexpression of Noggin in the lateral somite triggers their premature differentiation suggesting that lateral plate-BMP4 maintains them in an undifferentiated state. Moreover, directly accelerating their differentiation by MyoD overexpression prior to arrival of medial fibers, generates a severely mispatterned lateral myotome. This is in contrast to medial pioneers that have the capacity for self-organization. Furthermore, inhibiting differentiation of medial pioneers with dominant-negative MyoD also disrupts lateral myoblast patterning and differentiation. Thus, we propose that medial pioneers are needed for proper morphogenesis of the lateral population which is kept as undifferentiated mesenchyme by BMP4 until their arrival. In addition, medial pioneers also organize dermomyotome lip-derived fibers suggesting that they have a general role in patterning myotome development.  相似文献   

15.
16.
17.
18.
The vertebrate somite is the source of all trunk skeletal muscles. Myogenesis in avian embryos is thought to depend on signals from notochord and neural tube for the epaxial muscles, and signals from lateral mesoderm and surface ectoderm for the hypaxial muscles. However, this hypothesis has to be tested because in mouse mutants lacking a notochord the presence of a fused myotome beneath the neural tube has been reported. We have compared the expression pattern of myogenic markers and markers for the hypaxial muscle precursors in the mutants Brachyury curtailed, truncate, Danforth's short tail and Pintail. In regions lacking notochord and sclerotome, we found small, ventrally located domains of Myf5 and MyoD expression, concomitant with ventrally expanded Pax3 signals and upregulated expression of the hypaxial marker Lbx1, suggesting that only the hypaxial program is active. We therefore hypothesise that in mammals, as in birds, the formation of the epaxial musculature depends on the presence of notochord derived signals.  相似文献   

19.
Skeletal muscle development in the vertebrate embryo critically depends on the myogenic regulatory factors (MRFs) including MRF4 and Myf5. Both genes exhibit distinct expression patterns during mouse embryogenesis, although they are genetically closely linked with multiple regulatory elements dispersed throughout the common gene locus. MRF4 has a biphasic expression profile, first in somites and later in foetal skeletal muscles. Here, we demonstrate by transgenic analysis that elements within a 7.5-kb promoter fragment of the MRF4 gene are sufficient to drive the embryonic wave of expression very similar to the endogenous gene in somites of mouse embryos. In contrast, a 3-kb fragment of the proximal promoter fails to support expression in the myotome, suggesting that essential cis-acting elements are located between -7.5 and -3 kb upstream of MRF4. Further analysis of this sequence delimits an essential region between -6.6 and -5.6 kb that together with the 3-kb promoter fragment directs transgene expression in the epaxial myotome of all somites during the appropriate developmental period. These data provide evidence that the partly overlapping expression patterns of Mrf4 and Myf5 in somites are controlled by distinct regulatory elements. We also show that 11.4 kb sequence upstream of MRF4, including the promoter and the somitic control region identified in this study, is not sufficient to elicit target specificity towards the strong Myf5 (-58/-48 kb) enhancer, suggesting that additional yet unidentified elements are necessary to convey promoter selectivity and protect the MRF4 gene from this enhancer.  相似文献   

20.
During vertebrate embryogenesis, the somites form by segmentation of the trunk mesoderm, lateral to the neural tube, in an anterior to posterior direction. Analysis of differential gene expression during somitogenesis has been problematic due to the limited amount of tissue available from early mouse embryos. To circumvent these problems, we developed a modified differential display PCR technique that is highly sensitive and yields products that can be used directly as in situ hybridisation probes. Using this technique, we isolated NLRR-1 as a gene expressed in the myotome of developing somites but not in the presomitic mesoderm. Detailed expression analysis showed that this gene was expressed in the skeletal muscle precursors of the myotome, branchial arches and limbs as well as in the developing nervous system. Somitic expression occurs in the earliest myoblasts that originate from the dorsal lip in a pattern reminiscent of the muscle determination gene Myf5, but not at the ventral lip, indicating that NLRR-1 is expressed in a subset of myotome cells. The NLRR genes comprise a three-gene family encoding glycosylated transmembrane proteins with external leucine-rich repeats, a fibronectin domain, an immunoglobulin domain and short intracellular tails capable of mediating protein-protein interaction. Analysis of NLRR-3 expression revealed regulated expression in the neural system in developing ganglia and motor neurons. NLRR-2 expression appears to be predominately confined to the adult. The regulated embryonic expression and cellular location of these proteins suggest important roles during mouse development in the control of cell adhesion, movement or signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号