首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made to determine whether factors other than the availability of phosphorus were involved in the regulation of synthesis of teichoic and teichuronic acids in Bacillus subtilis subsp. niger WM. First, the nature of the carbon source was varied while the dilution rate was maintained at about 0.3 h-1. Irrespective of whether the carbon source was glucose, glycerol, galactose, or malate, teichoic acid was the main anionic wall polymer whenever phosphorus was present in excess of the growth requirement, and teichuronic acid predominated in the walls of phosphate-limited cells. The effect of growth rate was studied by varying the dilution rate. However, only under phosphate limitation did the wall composition change with the growth rate: walls prepared from cells grown at dilution rates above 0.5 h-1 contained teichoic as well as teichuronic acid, despite the culture still being phosphate limited. The wall content of the cells did not vary with the nature of the growth limitation, but a correlation was observed between the growth rate and wall content. No indications were obtained that the composition of the peptidoglycan of B. subtilis subsp. niger WM was phenotypically variable.  相似文献   

2.
A glycerol-requiring mutant ofBacillus subtilis formed irregular spheres and showed disturbed septum formation, when subjected to growth limitation by the supply of glycerol. Under phosphate limitation the cells were also round and developed asymmetric septa. In magnesium-limited cultures the cells contained a thickened wall, as compared with that of the parent strain grown under the same conditions. Chemical analysis revealed the presence of teichoic acid as the major anionic polymer in the wall of the glycerol-, as well as the magnesium-limited cells of the glycerol-requiringB. subtilis mutant.Under phosphate limitation teichuronic acid was the only anionic polymer present in the wall. Thus, in this respect, there were no apparent differences between mutant organisms and the parent strain when grown under magnesium and phosphate limitation, respectively and the observed morphological deviations could not be correlated with an altered anionic polymer content of the wall.  相似文献   

3.
Conditions are described for the continuous culture of a derivative of Staphylococcus aureus H in a fully defined minimal medium in which cysteine is the sole amino acid. The effects of growth under various nutrient limitations on the composition and properties of the cell wall have been studied. The proportion of ribitol teichoic acid present in the wall, and the extent to which it is substituted with N-acetylglucosamine, varies in bacteria grown under different conditions as does the composition and extent of cross-linking of the peptidoglycan. Neither the derivative nor the original strain H produced teichuronic acid when grown under phosphate limitation.Non-Standard Abbreviation SDS Sodium dodecyl sulphate  相似文献   

4.
The relationship between wall anionic polymer synthesis and cell morphology has been studied in Bacillus subtilis 168 and its temperature-sensitive tagB mutant strain BR19-200B. The amount and type of anionic polymer synthesized varied under different growth conditions, as did the morphology of the bacteria. Anionic polymer synthesis was affected by the phosphate supply. It was also found that teichuronic acid synthesis was temperature-sensitive in wild-type bacteria. Teichuronic acid synthesis was affected by the tagB lesion, previously thought to affect only teichoic acid synthesis. A relationship was observed between synthesis of the alternative polymers, such that suppression of teichuronic acid synthesis is accompanied by an increase in the synthesis of teichoic acid. Variation in anionic polymer content was accompanied by variation in cell shape. Differences in shape were related to differences in total anionic polymer rather than to differences in individual polymer type.  相似文献   

5.
Bacillus subtilis 168 was grown in chemostat culture in fully defined media containing a constant concentration of magnesium and concentrations of phosphate that varied from those giving phosphate-limited growth to those in which phosphate was present in excess and magnesium was limiting. Phosphate-limited bacteria were deficient in wall teichoic acid and contained less than half as much cellular phosphate as did bacteria grown in excess of phosphate. Approximately 70% of the additional phosphate in the latter bacteria was present as wall teichoic acid, indicating that the ability of the bacteria to discontinue teichoic acid synthesis when grown under phosphate limitation permits a substantial increase in their growth yield. Since not all of the additional phosphate is present as wall teichoic acid other cellular phosphates may also be present in reduced amounts in the phosphate-limited bacteria. The content of phosphate groups in walls of magnesium-limited bacteria was similar to the content of uronic acid groups in walls of phosphate-limited bacteria, and walls of bacteria grown in media of intermediate composition contained intermediate proportions of the two anionic polymers. Phage SP50, used as a marker for the presence of teichoic acid, bound densely to nearly all of the bacteria in samples containing down to 22% of the maximum content of teichoic acid. Apparently, therefore, nearly all of these bacteria contain teichoic acid, and the population does not consist of a mixture of individuals having exclusively one kind of anionic polymer. Bacteria containing less than 22% of the maximum content of teichoic bound in a nonuniform manner, and possible explanations for this are discussed.  相似文献   

6.
Phosphate starvatiion induced teichuronic acid synthesis in cells of Bacillus subtilis 168trp? which had previously been grown with excess phophate. This induction was prevented when protein synthesis was inhibited immediately prior to phosphate starvation and under these conditions cells continued to form teichoic acid. The converse was true when phosphate was added to cells previously grown in phosphate-limited chemostat. The increase in teichoic acid synthesis normally following phosphate addition was prevented by chlorampehnicol or amino acid starvation and cells continued to make teichuronic acid. The suggestion that repression of enzyme synthesis is involved in controlling the type of wall polymer made was supported by the low levels of UDP-glucose dehydrogenase found in cells grown with excess phosphate and of CDP-glycerol pyrophosphorylase in phophate-limited cells. The greater amounts of teichoic acid made under phosphate limitation and of teichuronic acid with excess phosphate when protein synthesis was also inhibited indicated that modulation of enzyme activity occurs. Glycerol starvation of a glycerol-requiring mutant did not derepress teichuronic acid synthesis, indicating that glycerol-containing intermediates do not act as repressors.  相似文献   

7.
1. Mg(2+)-limited Bacillus subtilis var. niger, growing in a chemostat in a simple salts medium, contained considerably more potassium and phosphorus than Mg(2+)-limited Aerobacter aerogenes growing in a similar medium at corresponding dilution rates. 2. Growth of the bacillus in a K(+)-limited environment did not lower the cellular potassium and phosphorus contents, the molar proportions of cell-bound magnesium, potassium, RNA (as nucleotide) and phosphorus being approximately constant at 1:13:5:13 (compared with 1:4:5:8 in Mg(2+)-limited or K(+)-limited A. aerogenes). 3. Growth of B. subtilis in a phosphate-limited environment caused the cellular phosphorus content to be lowered to a value similar to that of Mg(2+)-limited A. aerogenes, but the potassium content was not correspondingly lowered; the molar potassium:magnesium ratio varied from 14 to 17 with changes in dilution rate from 0.4 to 0.1hr.(-1). 4. Whereas over 70% of the cell-bound phosphorus of Mg(2+)-limited or K(+)-limited A. aerogenes was contained in the nucleic acids, these polymers accounted for less than 50% of the phosphorus present in similarly limited B. subtilis; much phosphorus was present in the walls of the bacilli, bound in a teichoic acid-type compound composed of glycerol phosphate and glucose (but no alanine). 5. Phosphate-limited B. subtilis cell walls (from organisms grown at a dilution rate of 0.2hr.(-1)) contained little phosphorus and no detectable amounts of teichoic acid, but 40% of the cell-wall dry weight could be accounted for by a teichuronic acid-type compound; this contained a glucuronic acid and galactosamine, neither of which could be detected in the walls of Mg(2+)-limited B. subtilis grown at a corresponding rate. 6. It is suggested that the high concentration of potassium in growing B. subtilis (compared with A. aerogenes) results from the presence of large amounts of anionic polymer (teichoic acid or teichuronic acid) in the bacillus cell walls.  相似文献   

8.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

9.
Bacterial cell wall homeostasis is an intricately coordinated process that ensures that envelope integrity is maintained during cell growth and division, but can also adequately respond to growth‐limiting conditions such as phosphate starvation. In Bacillus subtilis, biosynthesis of the two major cell wall components, peptidoglycan and anionic polymers, is controlled by a pair of paralogous two‐component systems, WalRK and PhoPR respectively. Favorable growth conditions allow for a fast rate of cell wall biosynthesis (WalRK‐ON) and the incorporation of the phosphate‐containing anionic polymer teichoic acids (PhoPR‐OFF). In contrast, growth‐restricted cells under phosphate‐limiting conditions reduce the incorporation of peptidoglycan building blocks (WalRK‐OFF) and switch from the phosphate‐containing teichoic acids to the phosphate‐free anionic polymer teichuronic acid (PhoPR‐ON). Botella et al. (2014) deepen our knowledge on the PhoPR system by identifying one signal that is perceived by its histidine kinase PhoR. In fast‐growing cells, intracellular intermediates of teichoic acid biosynthesis are sensed by the cytoplasmic Per‐Arnt‐Sim domain as an indicator of favorable conditions, thereby inhibiting the autokinase activity of PhoR and keeping the system inactive. Depletion of teichoic acid building blocks under phosphate‐limiting conditions relieves this inhibition, activates PhoPR‐dependent signal transduction and hence the switch to teichuronic acid biosynthesis.  相似文献   

10.
Major sites of metal binding in Bacillus licheniformis walls.   总被引:6,自引:2,他引:4       下载免费PDF全文
Isolated and purified walls of Bacillus licheniformis NCTC 6346 his contained peptidoglycan, teichoic acid, and teichuronic acid (0.36 mumol of diaminopimelic acid, 0.85 mumol of organic phosphorus, and 0.43 mumol of glucuronic acid per mg [dry weight] of walls, respectively). The walls also contained a total of 0.208 mumol of metal per mg. When these walls were subjected to metal-binding conditions (T. J. Beveridge and R. G. E. Murray, J. Bacteriol. 127:1502-1518, 1976) for nine metals, the amount of bound metal above background ranged from 0.910 mumol of Na to 0.031 mumol of Au per mg of walls. Most were in the 0.500-mumol mg-1 range. Electron-scattering profiles from unstained thin sections indicated that the metal was dispersed throughout the wall fabric. Mild alkali treatment extracted teichoic acid from the walls (97% based on phosphorus) but left the peptidoglycan and teichuronic acid intact. This treatment reduced their capacity for all metals but Au. Thin sections revealed that the wall thickness had been reduced by one-third, but metal was still dispersed throughout the wall fabric. Trichloroacetic acid treatment of the teichoic acid-less walls removed 95% of the teichuronic acid (based on glucuronic acid) but left the peptidoglycan intact (based on sedimentable diaminopimelic acid). The thickness of these walls was not further reduced, but little binding capacity remained (usually less than 10% of the original binding). The staining of these walls with Au produced a 14.4-nm repeat frequency within the peptidoglycan fabric. Sedimentation velocity experiments with the extracted teichuronic acid in the presence of metal confirmed it to be a potent metal-complexing polymer. These results indicated that teichoic and teichuronic acids are the prime sites of metal binding in B. licheniformis walls.  相似文献   

11.
1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg(2+)-limitation to PO(4) (3-)-limitation or K(+)-limitation to PO(4) (3-)-limitation showed that teichuronic acid synthesis started immediately the culture became PO(4) (3-)-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO(4) (3-)-limited B. subtilis var. niger culture was returned to being Mg(2+)-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.  相似文献   

12.
Cell walls of Bacillus subtilis W23 contain teichuronic acid when grown in a chemostat under phosphate limitation at a low dilution rate, but teichoic acid at a higher dilution rate. The teichuronic acid was purified and shown to be a polymer of glucuronic acid and N-acetylgalactosamine.  相似文献   

13.
Control of teichoic acid synthesis in Bacillus licheniformis ATCC 9945   总被引:7,自引:0,他引:7  
Analysis of cell walls of Bacillus licheniformis ATCC 9945 grown under phosphate limitation showed that teichoic acid could be replaced by teichuronic acid under these conditions. Teichuronic acid, however, was always present in the walls to some extent irrespective of the growth conditions. The enzymes involved in teichoic acid synthesis were investigated and the synthesis of these was shown to be repressed when the intracellular Pi level fell. CDP-glycerol pyrophosphorylase was studied in some detail and evidence is presented to show that the enzyme is inactivated under phosphate-limited conditions. The mechanism of inactivation is unknown but it has been shown that it does not require protein synthesis de novo.  相似文献   

14.
15.
When grown in a chemostat under various nutritional conditions, cells of Bacillus subtilis W23 produce walls containing teichoic acid or teichuronic acid. The binding of Mg2+ to these walls and to the isolated anionic polymers in solution was measured by equilibrium dialysis. In solution the ribitol teichoic acid bound Mg2+ in the molar ratio Mg2+/P=1:1 with an apparent association constant (Kassoc.) of 0.61 X 10(3)M-1, and the teichuronic acid bound Mg2+ in the ratio Mg2+/CO2-=1.1, Kassoc.=0.3 X 10(3)M-1. Cell walls containing teichuronic acid exhibited closely similar binding properties to those containing teichoic acid; in both cases Mg2+ was bound in the ratio Mg/P or Mg/CO2- of 0.5:1 and with a greater affinity than displayed by the isolated polymers in solution. It was concluded that Mg2+ ions are bound bivalently between anionic centres in the walls and that the incorporation of teichoic acid or teichuronic acid into the walls gives rise to similar ion-binding and charged properties. The results are discussed in relation to the possible functions of anionic polymers in cell walls.  相似文献   

16.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

17.
Chemostat cultures of Bacillus subtilis subsp. niger WM were exposed to changes in the availability of phosphorus by means of a resuspension technique. Responses in wall metabolism were recorded by measuring the amounts of peptidoglycan and anionic polymers (teichoic or teichuronic acid) in the wall and extracellular fluid fractions. With respect to the wall composition, the effect of a change in orthophosphate supply was a complete shift in the nature of the anionic polymer fraction, the polymer originally present in the walls ("old" polymer) being replaced by the alternative ("new") anionic polymer. The peptidoglycan content of the walls remained constant. It was concluded that the incorporation of old polymer was completely blocked from the moment the orthophosphate supply was changed. However, from a measurement of the total amount of polymer in the whole culture during the course of the experiments, it was evident that synthesis of old polymer continued, but it was secreted. Synthesis of the new polymer started immediately, and it was incorporated exclusively into the wall. During adaption of the cells to the new environment, wall turnover continued in an identical fashion to that extant in steady-state cultures. It was concluded that the primary adaptive response to a change in orthophosphate supply occurred through a mechanism interacting with polymer incorporation and thus at the level of wall assembly at the membrane.  相似文献   

18.
19.
The morphology and cell wall composition of Bacillus coagulans, a facultative thermophile, were examined as a function of growth temperature. The morphology of the organism varied when it was grown at different temperatures; at 37 C the organism grew as individual cells which increased in length with increasing growth temperature. At 55 C it grew in long chains of cells. Cell wall prepared from cells grown at 37 C contained 44% teichoic acid by weight, whereas cells grown at 55 C contained 29% teichoic acid. Teichoic acid from these cells was a polymer of glycerol phosphate containing galactose and ester alanine. The ratio of ester alanine to phosphate was significantly higher in cell walls and teichoic acid from 37 C-grown cells compared with those from 55 C-grown cells. Other differences observed were that cells grown at 55 C contained a lower level of autolytic ability, produced cell walls which bound more Mg(2+), and contained less peptide cross-bridging in its peptidoglycan layer than cells grown at 37 C.  相似文献   

20.
An attempt has been made to identify proteins synthesised during induction of teichoic acid synthesis in Bacillus licheniformis ATCC 9945. The proteins are recognised as those produced on the change from teichuronic acid to teichoic acid synthesis that occurs after the transfer of the bacteria from phosphate-limited to phosphate-rich conditions. B. licheniformis was grown in phosphate-limiting conditions in the presence of threonine to stimulate threonine uptake. The bacteria were then transferred to phosphate-rich conditions and were pulsed-labelled with [14C]threonine during the change to teichoic acid synthesis. All of the proteins were extracted from the cells with sodium dodecyl sulphate and were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Radioactive polypeptides were identified by fluorography of the polyacrylamide gels. The radioactive polypeptides that were formed on change from teichuronic acid to teichoic acid synthesis were compared with the polypeptides present in a membrane sub-fraction that had high teichoic acid-synthesising activity. The labelling of nine polypeptides with [14C]threonine was dependent on new RNA synthesis. Of these nine polypeptides, five were also present in the membrane sub-fraction with the highest teichoic acid-synthesising activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号