首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SWISS-PROT group at EBI has developed the Proteome Analysis Database utilising existing resources and providing comparative analysis of the predicted protein coding sequences of the complete genomes of bacteria, archaea and eukaryotes (http://www.ebi.ac. uk/proteome/). The two main projects used, InterPro and CluSTr, give a new perspective on families, domains and sites and cover 31-67% (InterPro statistics) of the proteins from each of the complete genomes. CluSTr covers the three complete eukaryotic genomes and the incomplete human genome data. The Proteome Analysis Database is accompanied by a program that has been designed to carry out InterPro proteome comparisons for any one proteome against any other one or more of the proteomes in the database.  相似文献   

2.
The Proteome Analysis database (http://www.ebi.ac.uk/proteome/) has been developed by the Sequence Database Group at EBI utilizing existing resources and providing comparative analysis of the predicted protein coding sequences of the complete genomes of bacteria, archeae and eukaryotes. Three main projects are used, InterPro, CluSTr and GO Slim, to give an overview on families, domains, sites, and functions of the proteins from each of the complete genomes. Complete proteome analysis is available for a total of 89 proteome sets. A specifically designed application enables InterPro proteome comparisons for any one proteome against any other one or more of the proteomes in the database.  相似文献   

3.
The technique of proteome analysis using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this study, the proteins of rice were cataloged, a rice proteome database was constructed, and a functional characterization of some of the identified proteins was undertaken. Proteins extracted from various tissues and subcellular compartments in rice were separated by 2D-PAGE and an image analyzer was used to construct a display of the proteins. The Rice Proteome Database contains 23 reference maps based on 2D-PAGE of proteins from various rice tissues and subcellular compartments. These reference maps comprise 13129 identified proteins, and the amino acid sequences of 5092 proteins are entered in the database. Major proteins involved in growth or stress responses were identified using the proteome approach. Some of these proteins, including a β-tubulin, calreticulin, and ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice, have unexpected functions. The information obtained from the Rice Proteome Database will aid in cloning the genes for and predicting the function of unknown proteins.  相似文献   

4.
The pilot phase of the Brain Proteome Project (BPP), the Human Proteome Organization (HUPO) initiative that focuses on studies of the brain of both humans and mice, has now been completed. Participating laboratories studied the proteomes of two human samples derived from biopsy and autopsy as well as three mouse samples from various developmental stages. With the combined and centrally reprocessed data now available, a comparison in terms of protein identifications and project organization is made between the HUPO BPP pilot and three other proteomics studies: the HUPO Plasma Proteome Project (PPP) pilot, a proteome of human blood platelets and a recently published comprehensive mouse proteome. Finally, as any comparison between large-scale proteomics datasets is decidedly non-trivial, we also evaluate and discuss several ways to go about comparing such different result sets.  相似文献   

5.
蛋白质组研究的现状与展望   总被引:11,自引:1,他引:11  
蛋白质组是后基因组时代出现的一个新兴研究领域。蛋白质组的研究主要是先通过双向凝胶电泳等方法分离蛋白质,然后用质谱等技术进行鉴定。它是后基因组重要的研究方向之一,具有巨大的商业应用前景,将会推动整个生命科学的发展。蛋白质组研究取得了很大进展,已经成为生物技术中的一个重要领域。  相似文献   

6.
Human liver proteome project: plan, progress, and perspectives   总被引:6,自引:0,他引:6  
The Human Liver Proteome Project is the first initiative of the human proteome project for human organs/tissues and aims at writing a modern Prometheus myth. Its global scientific objectives are to reveal the "solar system" of the human liver proteome, expression profiles, modification profiles, a protein linkage (protein-protein interaction) map, and a proteome localization map, and to define an ORFeome, physiome, and pathome. Since it was first proposed in April 2002, the Human Liver Proteome Project has attracted more than 100 laboratories from all over the world. In the ensuing 3 years, we set up a management infrastructure, identified reference laboratories, confirmed standard operating procedures, initiated international research collaborations, and finally achieved the first set of expression profile data.  相似文献   

7.
Reiter LT  Do LH  Fischer MS  Hong NA  Bier E 《Fly》2007,1(3):164-171
The availability of complete genome sequence information for diverse organisms including model genetic organisms has ushered in a new era of protein sequence comparisons making it possible to search for commonalities among entire proteomes using the Basic Local Alignment Search Tool (BLAST). Although the identification and analysis of proteins shared by humans and model organisms has proven an invaluable tool to understanding gene function, the sets of proteins unique to a given model organism's proteome have remained largely unexplored. We have constructed a searchable database that allows biologists to identify proteins unique to a given proteome. The Negative Proteome Database (NPD) is populated with pair-wise protein sequence comparisons between each of the following proteomes: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Dictyostelium discoideum, Chlamydomonus reinhardti, Escherichia coli K12, Arabidopsis thaliana and Methanoscarcina acetivorans. Our analysis of negative proteome datasets using the NPD has thus far revealed 107 proteins in humans that may be involved in motile cilia function, 1628 potential pesticide target proteins in flies, 659 proteins shared by flies and humans that are not represented in the less neurologically complex worm proteome, and 180 nuclear encoded human disease associated proteins that are absent from the fly proteome. The NPD is the only online resource where users can quickly perform complex negative and positive comparisons of model organism proteomes. We anticipate that the NPD and the adaptable algorithm which can readily be used to duplicate this analysis on custom sets of proteomes will be an invaluable tool in the investigation of organism specific protein sets.  相似文献   

8.
《Fly》2013,7(3):164-171
The availability of complete genome sequence information for diverse organisms including model genetic organisms has ushered in a new era of protein sequence comparisons making it possible to search for commonalities among entire proteomes using the Basic Local Alignment Search Tool (BLAST). Although the identification and analysis of proteins shared by humans and model organisms has proven an invaluable tool to understanding gene function, the sets of proteins unique to a given model organism's proteome have remained largely unexplored. We have constructed a searchable database that allows biologists to identify proteins unique to a given proteome. The Negative Proteome Database (NPD) is populated with pair-wise protein sequence comparisons between each of the following proteomes: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Dictyostelium discoideum, Chlamydomonus reinhardti, Escherichia coli K12, Arabidopsis thaliana and Methanoscarcina acetivorans. Our analysis of negative proteome datasets using the NPD has thus far revealed 107 proteins in humans that may be involved in motile cilia function, 1628 potential pesticide target proteins in flies, 659 proteins shared by flies and humans that are not represented in the less neurologically complex worm proteome, and 180 nuclear encoded human disease associated proteins that are absent from the fly proteome. The NPD is the only online resource where users can quickly perform complex negative and positive comparisons of model organism proteomes. We anticipate that the NPD and the adaptable algorithm which can readily be used to duplicate this analysis on custom sets of proteomes will be an invaluable tool in the investigation of organism specific protein sets.  相似文献   

9.
The Mycobacterium tuberculosis Proteome Comparison Database (MTB-PCDB) is an online database providing integrated access to proteome sequence comparison data for five strains of Mycobacterium tuberculosis (H37Rv, H37Ra, CDC 1551, F11 and KZN 1435) sequenced completely so far. MTB-PCDB currently hosts 40252 protein sequence comparison data obtained through inter-strain proteome comparison of five different strains of MTB. 2373 proteins were found to be identical in all 5 strains using MTB H(37)Rv as reference strain. To enable wide use of this data, MTB-PCDB provides a set of tools for searching, browsing, analyzing and downloading the data. By bringing together, M. tuberculosis proteome comparison among virulent & avirulent strains and also drug susceptible & drug resistance strains MTB-PCDB provides a unique discovery platform for comparative proteomics among these strains which may give insights into the discovery & development of TB drugs, vaccines and biomarkers. AVAILABILITY: The database is available for free at http://www.bicjbtdrc-mgims.in/MTB-PCDB/  相似文献   

10.
Current perspectives in cancer proteomics   总被引:2,自引:0,他引:2  
Proteome technology has been used widely in cancer research and is a useful tool for the identification of new cancer markers and treatment-related changes in cancer. This article details the use of proteome technology in cancer research, and laboratory-based and clinical cancer research studies are described. New developments in proteome technology that enable higher sample-throughput are evaluated and methods for enhancing conventional proteome analysis (based on two-dimensional electrophoresis) discussed. The need to couple laboratory-based proteomics research with clinically relevant models of the disease is also considered, as this remains the next main challenge of cancer-related proteome research.  相似文献   

11.
The Human Proteome Organisation Brain Proteome Project aims at coordinating neuroproteomic activities with respect to analysis of development, aging, and evolution in human and mice and at analysing normal aging processes as well as neurodegenerative diseases. Our group participated in the mouse pilot study of this project using two different 2-DE systems, to find out the optimal conditions for comprehensive gel-based differential proteome analysis. Besides the assessment of the best methodical conditions the question of "How many biological replicate analyses have to be performed to get reliable statistically validated results?" was addressed. In total 420 differences were detected in all analyses. Both 2-DE methods were found to be suitable for comprehensive differential proteome analysis. Nevertheless, each of the methods showed substantial advantages and disadvantages resulting in the fact that modification of both systems is essential. From our results we can draw the conclusions that for the future optimal quantitative differential gel-based brain proteome analyses the sample preparation has to be slightly changed, the resolution of the first as well as the second dimension has to be advanced, the number of experiments has to be increased and that the 2D-DIGE system should be applied.  相似文献   

12.
Gilbert S. Omenn 《Proteomics》2013,13(16):2375-2376
The human eye proteome is the latest addition to the HUPO Human Proteome Project (HPP). Semba et al. (The Human Eye Proteome Project: Perspectives on an emerging proteome. Proteomics 2013, 13, 2500–2511) establish a provisional baseline for the proteomes of the many anatomical compartments of the eye, based on literature review. As part of the Biology and Disease‐driven HPP, they and their colleagues will generate fresh data and meet the stringent guidelines for protein identification and characterization as established by the HPP.  相似文献   

13.
The data collected by Human Proteome Organization's Plasma Proteome Pilot project phase was analyzed by members of our working group. Accordingly, a functional annotation of the human plasma proteome was carried out. Here, we report the findings of our analyses. First, bioinformatic analyses were undertaken to determine the likely sources of plasma proteins and to develop a protein interaction network of proteins identified in this project. Second, annotation of these proteins was performed in the context of functional subproteomes involved in the coagulation pathway, the mononuclear phagocytic system, the inflammation pathway, the cardiovascular system, and the liver; as well as the subset of proteins associated with DNA binding activities. Our analyses contributed to the Plasma Proteome Database (http://www.plasmaproteomedatabase.org), an annotated database of plasma proteins identified by HPPP as well as from other published studies. In addition, we address several methodological considerations including the selective enrichment of post-translationally modified proteins by the use of multi-lectin chromatography as well as the use of peptidomic techniques to characterize the low molecular weight proteins in plasma. Furthermore, we have performed additional analyses of peptide identification data to annotate cleavage of signal peptides, sites of intra-membrane proteolysis and post-translational modifications. The HPPP-organized, multi-laboratory effort, as described herein, resulted in much synergy and was essential to the success of this project.  相似文献   

14.
The notion that integration of cutting-edge technologies in stem cell research would be enhanced by proteomic analyses has emanated from rapid advances in proteome technology. These advances have increased the probability that basic properties of stem cells will be elucidated more effectively, leading to acceleration toward novel stem cell therapies. We have therefore sought to establish a world-wide alliance of proteomics and stem cell researchers, which has resulted in the foundation of an initiative supported by the Human Proteome Organisation (HUPO) and the International Society for Stem Cell Research (ISSCR) called the Proteome Biology of Stem Cells Initiative. Here we report on the rationale and goals of this initiative.  相似文献   

15.
Proteomics has rapidly become an important tool for life science research, allowing the integrated analysis of global protein expression from a single experiment. To accommodate the complexity and dynamic nature of any proteome, researchers must use a combination of disparate protein biochemistry techniques, often a highly involved and time-consuming process. Whilst highly sophisticated, individual technologies for each step in studying a proteome are available, true high-throughput proteomics that provides a high degree of reproducibility and sensitivity has been difficult to achieve. The development of high-throughput proteomic platforms, encompassing all aspects of proteome analysis and integrated with genomics and bioinformatics technology, therefore represents a crucial step for the advancement of proteomics research. ProteomIQ (Proteome Systems) is the first fully integrated, start-to-finish proteomics platform to enter the market. Sample preparation and tracking, centralized data acquisition and instrument control, and direct interfacing with genomics and bioinformatics databases are combined into a single suite of integrated hardware and software tools, facilitating high reproducibility and rapid turnaround times. This review will highlight some features of ProteomIQ, with particular emphasis on the analysis of proteins separated by 2D polyacrylamide gel electrophoresis.  相似文献   

16.
Proteomics has rapidly become an important tool for life science research, allowing the integrated analysis of global protein expression from a single experiment. To accommodate the complexity and dynamic nature of any proteome, researchers must use a combination of disparate protein biochemistry techniques, often a highly involved and time-consuming process. Whilst highly sophisticated, individual technologies for each step in studying a proteome are available, true high-throughput proteomics that provides a high degree of reproducibility and sensitivity has been difficult to achieve. The development of high-throughput proteomic platforms, encompassing all aspects of proteome analysis and integrated with genomics and bioinformatics technology, therefore represents a crucial step for the advancement of proteomics research. ProteomIQ? (Proteome Systems) is the first fully integrated, start-to-finish proteomics platform to enter the market. Sample preparation and tracking, centralized data acquisition and instrument control, and direct interfacing with genomics and bioinformatics databases are combined into a single suite of integrated hardware and software tools, facilitating high reproducibility and rapid turnaround times. This review will highlight some features of ProteomIQ, with particular emphasis on the analysis of proteins separated by 2D polyacrylamide gel electrophoresis.  相似文献   

17.
The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.  相似文献   

18.
Summary. Proteome is a natural consequence of the post-genome era when the HUGO project (Human Genome Organization) has almost been completed. Here, a specifically aimed proteome in drug dependence – morphinome, is described, including tasks, strategies and pitfalls of the methodology.  相似文献   

19.
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.  相似文献   

20.
Tear proteome profiling may generate useful information for the understanding of the interaction between an eye and its contacting objects, such as a contact lens or a lens implant. This is important for designing improved eye-care devices and maintaining the health of an eye. Proteome profiles of tear fluids may also be used for disease diagnosis and prognosis. However, only a small volume of tear fluid (<5 microL) can be collected in a clinical laboratory under normal operational conditions, which makes proteome profiling a challenge. In this work we apply several proteomic analysis techniques, including gel-based and solution-based approaches with LC-ESI and LC-MALDI MS and MS/MS to gauge the relative merits of producing proteome profiles and to generate as broad a coverage of the tear proteome as possible from this small amount of sample. It is shown that a total of 54 proteins can be confidently identified using less than 5 microL of tear fluid. Of these, 44 proteins can be detected by LC-MALDI MS alone with a consumption of 2 microL of tear fluid. Furthermore, LC-MALDI can be used to determine post-translational modifications (PTMs), such as glycosylation and phosphorylation, without any sample enrichment or treatment. This work represents one of the most extensive proteome profiles (i.e., proteins identified and PTMs characterized) generated from tear fluids using clinically relevant amounts of sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号