首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

2.
N B Garty  Y Salomon 《FEBS letters》1987,218(1):148-152
Solubilized and partially purified adenylate cyclase from bull sperm was found to be specifically activated (up to 6-fold) by sodium bicarbonate (NaHCO3) and to a lesser extent by NaNO3. Other sodium salts were either ineffective (e.g. NaCOOH) or inhibitory (e.g. NaHSO3, NaHSO4 and Na2B4O7). Stimulation by NaHCO3 was dose-dependent in the range of 0-40 mM and was greater when enzyme activity was assayed in the presence of magnesium as compared with manganese ions. Bicarbonate seems to affect maximal enzyme velocity (Vmax) and has no effect on the Km of adenylate cyclase for Mn-ATP. Stimulation of adenylate cyclase by NaHCO3 coincided with the elution pattern of the enzyme as recorded following chromatography on DEAE-cellulose or gel filtration on BioGel P-100. These results suggest that in the course of stimulation of sperm adenylate cyclase, bicarbonate is likely to interact directly with the enzyme. Furthermore, this intrinsic and unique property of sperm adenylate cyclase may explain results reported by others on the stimulation of cAMP production by bicarbonate in intact and broken sperm preparations and suggest a biochemical basis for enhanced sperm motility associated with high bicarbonate concentrations.  相似文献   

3.
Retro-orbital tissue membranes have been shown to have adenylate cyclase activity which can be stimulated by thyrotropin and by an exophthalmogenic factor derived from the thyrotropin molecule by partial pepsin digestion. This stimulable activity is maximal after 15 min and is optimal in the presence of 3 mM magnesium and 1.5 mM ATP. Calcium salts are exquisitely inhibitory to the hormonal stimulation; sodium, lithium, and ammonium salts are significantly less inhibitory. Thyrotropin and the exophthalmogenic factor induce similar maximal levels of stimulation but a 4- to 5-fold higher concentration of exophthalmogenic factor is required to achieve this level. Fluoride stimulates adenylate cyclase activity 2- to 3-fold higher than either thyrotropin or the exophthalmogenic factor; thyrotropin, luteinizing hormone, the beta subunit of thyrotropin, and the alpha subunit of thyrotropin have relative activities for stimulation of cyclase activity of 100:2:2 less than 0.5. Several other polypeptide and glycoprotein hormones have no effect. The gamma-globulin from patients with malignant exophthalmos has no significant effect on cyclase activity either alone or in the presence of maximal levels of thyrotropin or the exophthalmogenic factor; this gamma-globulin does, however, stimulate cyclase activity at submaximal hormone levels. Trypsin not only destroys the hormone-stimulable adenylate cyclase activity on retro-orbital tissue plasma membranes, but also destroys it on the 15,000 to 30,000 molecular weight receptor fragment released from the membranes by the tryptic action.  相似文献   

4.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

5.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated fluoride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40 degrees C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

6.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated flouride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40°C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

7.
Sodium and other monovalent cations (added as chloride salts) inhibited adenylate cyclase of luteinized rat ovary. Sodium chloride (150 mM) inhibited basal enzyme activity by 20%. Sodium chloride inhibition was enhanced to 34-54% under conditions of enzyme stimulation by guanine nucleotides (GTP and its nonhydrolyzable analog 5'-guanylyl imidodiphosphate), fluoride anion, and agonists (ovine luteinizing hormone (oLH) and the beta-adrenergic catecholamine isoproterenol) acting at stimulatory receptors linked to adenylate cyclase. Sodium chloride inhibition was dependent on salt concentration over a wide range (25-800 mM) as well as the concentrations of GTP and oLH. Inhibition by NaCl was of rapid onset and appeared to be reversible. The order of inhibitory potency of monovalent cations was Li+ greater than Na+ greater than K+. The role of individual components of adenylate cyclase in the inhibitory action of monovalent cations was examined. Exotoxins of Vibrio cholerae and Bordetella pertussis were used to determine respectively the involvement of the stimulatory and inhibitory guanine nucleotide-binding regulatory components (Ns and Ni) in NaCl inhibition. Sodium chloride inhibited cholera toxin-activated adenylate cyclase activity by 29%. Ni did not appear to mediate cation inhibition of adenylate cyclase because pertussis toxin did not attenuate inhibition by NaCl. Enzyme stimulation by agents (forskolin and Mn2+) thought to activate the catalytic component directly was not inhibited by NaCl but was instead significantly enhanced. Sodium chloride (150 mM) increased both the Kd for high-affinity binding of oLH to 125I-human chorionic gonadotropin binding sites and the Kact for oLH stimulation of adenylate cyclase by sevenfold. In contrast, NaCl had no appreciable effect on either isoproterenol binding to (-)-[125I]iodopindolol binding sites or the Kact for isoproterenol stimulation of adenylate cyclase. The results suggest that in luteinized rat ovary monovalent cations uncouple, or dissociate, Ns from the catalytic component and, in a distinct action, reduce gonadotropin receptor affinity for hormone. Dissociation of the inhibitory influence of Ni from direct catalytic activation could account for NaCl enhancement of forskolin- and Mn2+-associated activities. On the basis of these results, the spectrum of divergent stimulatory and inhibitory effects of monovalent cations on adenylate cyclase activities in a variety of tissues may be interpreted in terms of differential enzyme susceptibilities to cation-induced uncoupling of N and catalytic component functions.  相似文献   

8.
The adenylate cyclase of rat adipocyte plasma membrane is stimulated by sodium azide with a half maximal activation of 100–150% occuring at 50 mM NaN3. Studies of the effects of azide and fluoride indicate different mechanisms of stimulation of the enzyme by these ions. Comparable stimulation of the activity is obtained by 100 mM NaN3 or 10 mM NaF but unlike azide, higher concentrations of fluoride cause inhibition of the enzyme. Fluoride activated adenylate cyclase is further stimulated by azide. Epinephrine stimulation of the enzyme is absent in the presence of fluoride but the hormone enhances the activity in the presence of azide. Reversal of the inhibitory action of GTP on adenylate cyclase by epinephrine is demonstrated even in the presence of azide but not in the presence of fluoride.  相似文献   

9.
The effect of sodium arsenite and cadmium chloride on adenylate cyclase activity was examined in turkey erythrocyte membranes. Sodium arsenite was a weak inhibitor of adenylate cyclase -7mM produced only 60% inhibition. Its effect, however, was greatly potentiated by equimolar 2,3 dimercaprol- wherein 0.7 mM sodium arsenite inhibited 100% with an apparent Ki of 0.1 mM. Equimolar mercaptoethanol was less effective in potentiating sodium arsenite inhibition. Thus 0.7mM sodium arsenite in the presence of equimolar mercaptoethanol inhibited adenylate cyclase 56%. Excess 2,3 dimercaprol reversed inhibition by sodium arsenite or cadmium chloride. Sodium arsenite or cadmium chloride inhibited all forms of adenylate cyclase activity tested, including nonhormonal stimulation. Equimolar sodium arsenite and dimercaprol, at concentrations that caused 100% inhibition of adenylate cyclase activity, reduced the binding of the beta-receptor specific ligand iodohydroxybenzylpindolol by less than 15%. These results suggest that turkey erythrocyte membranes contain closely juxtaposed thiol groups and that interaction of such groups with arsenate interferes with the catalytic function of adenulate cyclase.  相似文献   

10.
A nucleotide phosphohydrolase-resistant analog of GTP, guanyl-5′-yl imidodiphosphate [GMP-P(NH)P], caused stimulation of basal adenylate cyclase activity of cardiac sarcolemma when ethylene glycol bis(β-aminoethyl ether)- N,N′-tetraacetic acid (EGTA) was absent in the assay mixture, whereas the nucleotide, in the presence of EGTA, inhibited basal cyclase activity. GTP, GDP, GMP, and guanosine failed to show such an inhibition of basal enzyme activity. The degree of both stimulatory and inhibitory effects of GMP-P(NH)P depended on the concentration of magnesium ions. The apparent affinities toward magnesium ions of the metal binding site and toward MgATP2? of the catalytic site of control and ?GMP-P(NH)P-inhibited” enzyme were similar. Isoproterenol reversed the inhibitory effect, whereas calcium ions failed to revert it. Both in the presence and absence of EGTA, GMP-P(NH)P plus isoproterenol caused a synergistic stimulation of the enzyme activity, the degree of stimulation being lower with EGTA present. Exposure of sarcolemma to GMP-P(NH)P (with and without isoproterenol and in the absence and presence of EGTA) caused an activation of adenylate cyclase, the degree of activation being higher with isoproterenol present. The activated enzyme displayed increased affinity toward Mg2+ at the metal binding site. When activated enzyme preparations were assayed in the presence of EGTA, reversal of the activated state was observed in the case of the GMP-P(NH)P-activated enzyme but not in the case of the GMP-P(NH)P + isoproterenol-activated enzyme.  相似文献   

11.
Choleragen and beta-adrenergic agonists, both of which activate turkey erythrocyte adenylate cyclase, have been reported to accelerate release of bound [3H]guanyl nucleotides from turkey erythrocyte membranes. We have now obtained evidence that choleragen- or isoproterenol-stimulated release reflects a change in the affinity of the regulatory subunit (G/F) of adenylate cyclase for guanyl nucleotides. Solubilized preparations of turkey erythrocytes that had bound radiolabeled GTP were chromatographed on Ultrogel AcA 34. The protein from which guanyl nucleotide was released upon incubation with choleragen or isoproterenol was co-eluted with G/F activity. Furthermore, this protein appears to be the same size as the complex containing the 42,000-dalton peptide, ADP*-ribosylated by choleragen, which is presumably a subunit of G/F. ADP ribosylation of the 42,000-dalton subunit of G/F by choleragen occurred with a half-time of about 5 min, whereas choleragen-stimulated release of guanyl nucleotides was much slower (t1/2 greater than or equal to 60 min). When membranes were treated with choleragen and NAD, the delay in activation of adenylate cyclase by guanylyl imidodiphosphate was decreased but not abolished, a finding consistent with the idea that release of endogenously bound nucleotide (and subsequent binding of the nonhydrolyzable GTP analog) occurs only slowly following ADP ribosylation. In contrast, activation of the adenylate cyclase of either toxin-treated or untreated membranes in the presence of isoproterenol and guanylyl imidodiphosphate was very rapid. These data support the hypothesis that isoproterenol and choleragen may activate adenylate cyclase, at least in part, by increasing the rate of release of guanyl nucleotides from G/F.  相似文献   

12.
Substance P was incubated in an adenylate cyclase assay of a particulate fraction of caudate-putamen tissue of the rat in order to examine the effect of the peptide on D-1 receptor coupled adenylate cyclase in vitro. Substance P did not influence basal adenylate cyclase activity or the stimulation of the enzyme by dopamine. No influence of substance P was seen on the effects of calcium and magnesium chloride as a cofactor of adenylate cyclase. Also the inhibition of adenylate cyclase activity by the dopamine antagonist fluphenazine was not influenced by substance P. However, substance P was able to enhance cyclic AMP formation in the presence of guanosine-imidodiphosphate (Gpp(NH)p), whereas the stimulatory effect of guanosine-triphosphate (GTP) was inhibited by substance P. In our study we suggest that substance P interacts with the guanine nucleotide regulatory subunit without directly affecting D-1 dopamine receptors in the caudate-putamen of the rat.  相似文献   

13.
The presence of adenosine receptors coupled to adenylate cyclase in rat heart sarcolemma is demonstrated in these studies. Heart sarcolemma was isolated by the hypotonic shock-Lithium bromide treatment method. This preparation contained negligible amounts (2-4%) of contamination by other subcellular organelles such as mitochondria, sarcoplasmic reticulum, and myofibrils as verified by electron microscopic examination. In addition this preparation was also devoid of endothelial cells, since angiotensin-converting enzyme activity was not detected in this preparation. N-Ethylcarboxamide adenosine (NECA), L-N6-phenylisopropyladenosine (PIA), and adenosine N'-oxide (Ado N'-oxide) were all able to stimulate adenylate cyclase in heart sarcolemma, but not in crude homogenate, with an apparent Ka of 3-7 microM. The activation of adenylate cyclase by NECA was dependent on the concentrations of metal ions such as Mg2+ or Mn2+. The maximal stimulation was observed at lower concentrations of the metal ions (0.2-0.5 mM). At 5 mM Mg2+ or Mn2+, the stimulation by NECA was completely abolished. The stimulatory effect of NECA on adenylate cyclase was also dependent on guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In addition, 2'-deoxyadenosine showed an inhibitory effect on adenylate cyclase. The myocardial adenylate cyclase was also stimulated by beta-adrenergic agonists, dopamine and glucagon, and inhibited by cholinergic agonists such as carbachol and oxotremorine. The stimulation of adenylate cyclase by NECA was found to be additive with maximal stimulation obtained by epinephrine. These data suggest that rat heart sarcolemma contains adenosine (Ra), beta-adrenergic, dopaminergic, glucagon, and cholinergic receptors, and the stimulation of adenylate cyclase by epinephrine and adenosine occurs by distinctly different mechanism or adenosine and epinephrine stimulate different cyclase populations.  相似文献   

14.
Bordetella pertussis, the etiologic agent of whooping cough, produces a calmodulin-sensitive adenylate cyclase which elevates intracellular cAMP in a variety of eucaryotic cells. Exogenous calmodulin added to the partially purified adenylate cyclase has been shown to inhibit invasion of animal cells by this enzyme (Shattuck, R. L., and Storm, D. R. (1985) Biochemistry 24, 6323-6328). In this study, several properties of the calmodulin-sensitive adenylate cyclase are shown to be influenced by Ca2+ in the absence of calmodulin. The presence or absence of Ca2+ during QAE-Sephadex ion exchange chromatography produced two distinct chromatographic patterns of adenylate cyclase activity. Two different forms of the enzyme (Pk1 and Pk2EGTA) were isolated by this procedure. Pk1 adenylate cyclase readily elevated intracellular cAMP levels in mouse neuroblastoma cells (N1E-115) while Pk2EGTA adenylate cyclase had no effect on cAMP levels in these cells. Gel exclusion chromatography of Pk1 adenylate cyclase gave apparent Stokes radii (RS) of 43.5 A (+/- 1.3) in the presence of 2 mM CaCl2 and 33.8 A (+/- 0.94) in the presence of 2 mM EGTA [( ethylenebis (oxyethylenenitrilo)]tetraacetic acid). These Stokes radii are consistent with molecular weights of 104,000 (+/- 6,400) and 61,000 (+/- 3,600), respectively. Pk2EGTA adenylate cyclase had an apparent RS of 33.0 (+/- 1.2) (Mr = 60,600 (+/- 2,800] in the presence of Ca2+ or excess EGTA. At 60 degrees C, Pk1 adenylate cyclase exhibited a Ca2+-dependent heat stability with a half-life for loss of enzyme activity of 10.3 min in 5 mM CaCl2 and a half-life of 2.8 min in the presence of 0.1 microM CaCl2. The stability of Pk2EGTA adenylate cyclase was not affected by changes in free Ca2+. The adenylate cyclase preparations described above were submitted to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and enzyme activity was recovered from gel slices by extraction with detergent containing buffers. The catalytic subunit isolated from SDS-polyacrylamide gels was activated 7-fold in the presence of Ca2+ with maximum activity observed at 1 microM free Ca2+. With both preparations, the apparent molecular weight of the catalytic subunit on SDS gels was 51,000 in the presence of 2 mM CaCl2 and 45,000 in the presence of 2 mM EGTA. The catalytic subunit of the enzyme was purified to apparent homogeneity by preparative SDS-polyacrylamide gel electrophoresis and resubmitted to SDS gel electrophoresis in the presence or absence of free Ca2+. The purified catalytic subunit also exhibited a Ca2+-dependent shift in its mobility on SDS gels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Adenylate cyclase in particulate fractions from rat adrenal glands is subject to regulation by purine nucleotides, particularly guanine nucleotides. While GTP activates the enzyme, this effect is not evident in all particulate fractions. Following dialysis of the refractory fractions activation by GTP is observed, an indication that endogenous nucleotides may obscure the effects of added GTP. The analog, guanyl-5'-yl imidodiphosphate (Gpp(NH)p gives considerable more activity than does GTP. GDP, on the other hand, is inhibitory, an effect revealed only in the absence of a nucleotide-regenerating solution. GDP blocks the action of both GTP and Gpp(NH)p. These results show that the gamma-phosphate of the nucleotide is required for but need not be metabolized in the activation process. At low substrate concentration (0.1 mM ATP or adenyl-5'-yl imidodiphosphate) stimulation of the enzyme by ACTH occurs only in the presence of added guanine nucleotide (GTP or Gpp(NH)p); the hormone and nucleotide act synergistically. While both GTP and Gpp(NH)p inhibit fluoride-stimulated activity, the level of fluoride required to demonstrate such inhibition appears not to be related to the level of fluoride required for activation of the enzyme. In the presence of GTP, or GTP plus ACTH, the enzyme exhibits normal Michaelis-Menten kinetics with respect to substrate utilization (K-m equal to 0.16 mM). In the activated state, produced with ACTH plus GTP, the enzyme is less susceptible to inhibition by a species of ATP uncomplexed with Mg2+, but is more susceptible to inhibition by Mg2+. These results demonstrate that fundamental differences exist between different states of the adenylate cyclase. The difficulties in describing kinetically the regulation of adenylate cyclase systems in view of the multiple actions of nucleotides and magnesium are discussed.  相似文献   

16.
Purified soluble guanylyl cyclase consists of two subunits (70 and 73 kDa) whose primary structures were recently determined. The availability of cDNA clones coding for either subunit allowed to study the question of the functional roles of the two subunits in expression experiments. Enzyme subunits were expressed in COS-7 cells by transfection with expression vectors containing the coding region for the 70 of 73 kDa subunit of the enzyme. No significant elevation in the activity of soluble guanylyl cyclase was observed in cells transfected with cDNA coding for one of the subunits. In contrast, transfection of cells with cDNAs coding for both subunits resulted in a marked increase in activity of soluble guanylyl cyclase. Enzyme activity was stimulated about 50-fold by sodium nitroprusside. The results indicate that formation of cyclic GMP by soluble guanylyl cyclase requires both 70 and 73 kDa subunits.  相似文献   

17.
We report here that forskolin acts in a synergistic manner with dopaminergic agonists, guanine nucleotides, or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase mediated by these reagents. In the presence of 100 microM GTP, 100 microM guanyl-5'-yl imidodiphosphate [Gpp(NH)p], or 10 mM NaF, there is a greater than additive increase in forskolin-stimulated enzyme activity as well as a concomitant decrease (two- to fourfold) in the EC50 value for forskolin stimulation of striatal enzyme activity. In the presence of various concentrations of forskolin (10 nM-100 microM), the stimulation of adenylate cyclase elicited by GTP, Gpp(NH)p, and NaF is potentiated 194-1,825%, 122-1,141%, and 208-938%, respectively, compared with the stimulation by these agents above basal activity in the absence of forskolin. With respect to 3,4-dihydroxyphenylethylamine (dopamine) receptor-mediated stimulation of striatal enzyme activity, the stimulation of enzyme activity by dopaminergic agonists, in the absence or presence of forskolin, was GTP-dependent and could be antagonized by the selective D-1 antagonist SCH23390 (100 nM), indicating that these effects are mediated by D-1 dopamine receptors. In the presence of 100 microM GTP, forskolin at various concentrations markedly potentiates the stimulation elicited by submaximal as well as a maximally effective concentrations of dopamine (100 microM) and SKF38393 (1 microM). At higher concentrations of forskolin (10-100 microM) the stimulation elicited by the partial agonist SKF38393 is comparable to that of the full agonist dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

19.
(-)-Norepinephrine and other catecholamines inhibit basal and prostaglandin E1-stimulated adenylate cyclase activities by 35 to 60% in homogenates of NG108-15 neuroblastoma x gloma hybrid cells and markedly reduce adenosine 3'35:'-monophosphate levels of intact cells, but do not affect guanosine 3':5'-monophosphate levels. The specificity of the NG108-15 receptor for ligands is that of an alpha receptor, possibly a presynaptic alpha 2 receptor. The inhibition of adenylate cyclase by norepinephrine is reversed by alpha receptor antagonists such as dihydroergotamine or phentolamine, but not by the beta receptor antagonist propranolol. The effect of norepinephrine on adenylate cyclase activity initially is dependent on GTP; half-maximal inhibition of enzyme activity by norepinephrine is obtained with 0.2 micron GTP. The inhibition of adenylate cyclase activity by norepinephrine is reduced by 10 mM NaF and is abolished by 0.05 mM guanyl-5'-yl imidodiphosphate. Inhibitions of NG108-15 adenylate cyclase mediated by alpha receptors, opiate receptors, and muscarinic acetylcholine receptors are not additive; this suggests that the three species of receptors can be functionally coupled to the same adenylate cyclase molecules or molecules regulating the enzyme.  相似文献   

20.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号