首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Marine and terrestrial environments differ fundamentally in space‐time scales of both physical and ecological processes. These differences will have an impact on the animals inhabiting each domain, particularly with respect to their spatial ecology. The behavioural strategies that underpin observed distributions of marine species are therefore important to consider. Comparatively little is known, however, about how wild fishes actually respond to gradients in food supply and temperature, and to potential mates. This paper describes how behavioural theory is being used to elucidate the strategies and tactics of free‐ranging sharks in three specific areas of study, namely, foraging on zooplankton, behavioural energetics and sexual segregation. The studies discussed are novel because shark movements were tracked in the wild using electronic tags in relation to simultaneous measurements of prey densities and thermal resources. The results show that filter‐feeding (basking shark, Cetorhinus maximus ) and predatory (dogfish, Scyliorhinus canicula ) sharks have relatively complex behaviour patterns integrally linked to maximizing surplus power, often through making short and longer term 'trade‐off' decisions between optimal foraging and thermal habitats. Interestingly, female S. canicula exhibit alternative behavioural strategies compared to males, a difference resulting in spatial segregation by habitat. Sexual segregation in this species occurs primarily as a consequence of male avoidance by females. Studies on free‐ranging sharks provide a useful model system for examining how a predator's strategy is shaped by its environment. More theory‐based studies of the behavioural processes of sharks are required however, before critical comparisons with other vertebrate predators are possible. Suggestions for further research to address this knowledge gap are given.  相似文献   

2.
1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting search patterns that are approximated as optimal in response to encountered changes in prey type and abundance, and across diverse marine habitats, from the surf zone to the deep ocean. 5. Our results provide some support for the LFF hypothesis. However, it is possible that the observed Lévy patterns of white sharks may not arise from an adaptive behaviour but could be an emergent property arising from simple, straight-line movements between complex (e.g. fractal) distributions of prey. Experimental studies are needed in vertebrates to test for the presence of Lévy behaviour patterns in the absence of complex prey distributions.  相似文献   

3.
The local distribution of basking sharks in the Bay of Fundy (BoF) is unknown despite frequent occurrences in the area from May to November. Defining this species’ spatial habitat use is critical for accurately assessing its Special Concern conservation status in Atlantic Canada. We developed maximum entropy distribution models for the lower BoF and the northeast Gulf of Maine (GoM) to describe spatiotemporal variation in habitat use of basking sharks. Under the Maxent framework, we assessed model responses and distribution shifts in relation to known migratory behavior and local prey dynamics. We used 10 years (2002-2011) of basking shark surface sightings from July-October acquired during boat-based surveys in relation to chlorophyll-a concentration, sea surface temperature, bathymetric features, and distance to seafloor contours to assess habitat suitability. Maximum entropy estimations were selected based on AICc criterion and used to predict habitat utilizing three model-fitting routines as well as converted to binary suitable/non-suitable habitat using the maximum sensitivity and specificity threshold. All models predicted habitat better than random (AUC values >0.796). From July-September, a majority of habitat was in the BoF, in waters >100 m deep, and in the Grand Manan Basin. In October, a majority of the habitat shifted southward into the GoM and to areas >200 m deep. Model responses suggest that suitable habitat from July - October is dependent on a mix of distance to the 0, 100, 150, and 200 m contours but in some models on sea surface temperature (July) and chlorophyll-a (August and September). Our results reveal temporally dynamic habitat use of basking sharks within the BoF and GoM. The relative importance of predictor variables suggests that prey dynamics constrained the species distribution in the BoF. Also, suitable habitat shifted minimally from July-September providing opportunities to conserve the species during peak abundance in the region.  相似文献   

4.
Understanding the factors that influence the distribution and abundance of predators, including sharks, is important for predicting the impacts of human changes to the environment. Such studies are particularly important in Florida Bay, USA where there are planned large-scale changes to patterns of freshwater input from the Everglades ecosystem. Studies of many marine predators suggest that links between predator and prey habitat use may vary with spatial scale, but there have been few studies of the role of prey distribution in shaping habitat use and abundance of sharks. We used longline catches of sharks and trawls for potential teleost prey to determine the influence of teleost abundance on shark abundance at the scale of regions and habitats in Florida Bay. We found that shark catch per unit effort (CPUE) was not linked to CPUE ofteleosts at the scale of sampling sites, but shark CPUE was positively correlated with the mean CPUE for teleosts within a region. Although there does not appear to be a strong match between the abundance of teleosts and sharks at small spatial scales, regional shark abundance is likely driven, at least partially, by the availability of prey. Management strategies that influence teleost abundance will have cascading effects to higher trophic levels in Florida Bay. Electronic Supplementary Material is available for this article at  相似文献   

5.
A review of past behavioral ultrasonic telemetry studies of sharks and rays is presented together with previously unpublished material on the behavior of the lemon shark, Negaprion brevirostris, around the Bimini Islands, Bahamas. The review, focusing on movement behaviors of 20 shark and three ray species, reveals that elasmobranchs exhibit a variety of temporal and spatial patterns in terms of rates-of-movement and vertical as well as horizontal migrations. The lack of an apparent pattern in a few species is probably attributable to the scarcity of tracking data. Movements are probably governed by several factors, some still not studied, but data show that food, water temperature, bottom type, and magnetic gradient play major roles in a shark's decision of where and when to swim. A few species exhibit differences in behavior between groups of sharks within the same geographical area. This interesting finding warrants further research to evaluate the causes of these apparent differences and whether these groups constitute different subpopulations of the same species. The lack of telemetry data on batoids and some orders of sharks must be addressed before we can gain a more comprehensive understanding of the behavior of elasmobranch fishes. Previously unpublished data from 47 smaller and 38 larger juvenile lemon sharks, collected over the decade 1988–1998, provide new results on movement patterns, habitat selection, activity rhythms, swimming speed, rate-of-movement, and homing behavior. From these results we conclude that the lemon shark is an active predator with a strong, apparently innate homing mechanism. This species shows ontogenetic differences in habitat selection and behavior, as well as differences in movements between groups of individuals within the same area. We suggest three hypotheses for future research on related topics that will help to understand the enigmatic behavior of sharks.  相似文献   

6.
Dramatic population declines among species of pelagic shark as a result of overfishing have been reported, with some species now at a fraction of their historical biomass. Advanced telemetry techniques enable tracking of spatial dynamics and behaviour, providing fundamental information on habitat preferences of threatened species to aid conservation. We tracked movements of the highest pelagic fisheries by-catch species, the blue shark Prionace glauca, in the North-east Atlantic using pop-off satellite-linked archival tags to determine the degree of space use linked to habitat and to examine vertical niche. Overall, blue sharks moved south-west of tagging sites (English Channel; southern Portugal), exhibiting pronounced site fidelity correlated with localized productive frontal areas, with estimated space-use patterns being significantly different from that of random walks. Tracked female sharks displayed behavioural variability in diel depth preferences, both within and between individuals. Diel depth use ranged from normal DVM (nDVM; dawn descent, dusk ascent), to reverse DVM (rDVM; dawn ascent, dusk descent), to behavioural patterns where no diel differences were apparent. Results showed that blue sharks occupy some of the most productive marine zones for extended periods and structure diel activity patterns across multiple spatio-temporal scales in response to particular habitat types. In so doing, sharks occupied an extraordinarily broad vertical depth range for their size (1.0-2.0 m fork length), from the surface into the bathypelagic realm (max. dive depth, 1160 m). The space-use patterns of blue sharks indicated they spend much of the time in areas where pelagic longlining activities are often highest, and in depth zones where these fisheries particularly target other species, which could account for the rapid declines recently reported for blue sharks in many parts of the world's oceans. Our results provide habitat targets for blue shark conservation that may also be relevant to other pelagic species.  相似文献   

7.
Animal movement and habitat selection are in part a response to landscape heterogeneity. Many studies of movement and habitat selection necessarily use environmental covariates that are readily available over large‐scales, which are assumed representative of functional habitat features such as resource availability. For widely distributed species, response to such covariates may not be consistent across ecosystems, as response to any specific covariate is driven by its biological relevance within the context of each ecosystem. Thus, the study of any widely distributed species within a limited geographic region may provide inferences that are not widely generalizable. Our goal was to evaluate the response of a marine predator to a suite of environmental covariates across a wide ecological gradient. We identified two behavioral states (resident and transient) in the movements of shortfin mako sharks Isurus oxyrinchus tracked via satellite telemetry in two regions of the western North Atlantic Ocean: the tropical Caribbean/Gulf of Mexico marginal sea (CGM), and the temperate waters of the open western Atlantic Ocean (OWA). We compared patterns of resident behavior between regions, and modeled relationships between oceanographic variables and resident behavior. We tracked 39 sharks during 2013–2015. Resident behavior was associated with shallow, continental shelf and slope waters in both regions. In the OWA resident behavior was associated with low sea surface temperature and high primary productivity, however, sharks exhibited no response to either variable in the CGM. There was a negative relationship between sea‐surface height gradient (a proxy for oceanic fronts) and resident behavior in the OWA, and a positive relationship in the CGM. Our observations likely reflect shark responses to regional variability in factors responsible for the distribution and availability of prey. Our study illustrates the importance of studying widely distributed species in a consistent manner over large spatial scales.  相似文献   

8.
We synthesize previous theory on ideal free habitat selection to develop a model of predator movement mechanisms, when both predators and prey are mobile. We consider a continuous environment with an arbitrary distribution of resources, randomly diffusing prey that consume the resources, and predators that consume the prey. Our model introduces a very general class of movement rules in which the overall direction of a predator's movement is determined by a variable combination of (i) random diffusion, (ii) movement in the direction of higher prey density, and/or (iii) movement in the direction of higher density of the prey's resource. With this model, we apply an adaptive dynamics approach to two main questions. First, can it be adaptive for predators to base their movement solely on the density of the prey's resource (which the predators do not consume)? Second, should predator movements be exclusively biased toward higher densities of prey/resources, or is there an optimal balance between random and biased movements? We find that, for some resource distributions, predators that track the gradient of the prey's resource have an advantage compared to predators that track the gradient of prey directly. Additionally, we show that matching (consumers distributed in proportion to resources), overmatching (consumers strongly aggregated in areas of high resource density), and undermatching (consumers distributed more uniformly than resources) distributions can all be explained by the same general habitat selection mechanism. Our results provide important groundwork for future investigations of predator-prey dynamics.  相似文献   

9.
Transatlantic stock mixing in basking sharks Cetorhinus maximus is supported by low genetic diversity in populations throughout the Atlantic Ocean. However, despite significant focus on the species' movements; >1500 individual sharks marked for recapture and >150 individuals equipped with remote tracking tags, only a single record of transatlantic movment has been previously recorded. Within this context, the seredipitous re-sighting of a female basking shark fitted with a satellite transmitter at Malin Head, Ireland 993 days later at Cape Cod, USA is noteworthy.  相似文献   

10.
1. Tiger sharks Galeocerdo cuvier are important predators in a variety of nearshore communities, including the seagrass ecosystem of Shark Bay, Western Australia. Because tiger sharks are known to influence spatial distributions of multiple prey species, it is important to understand how they use habitats at a variety of spatial scales. We used a combination of catch rates and acoustic tracking to determine tiger shark microhabitat use in Shark Bay. 2. Comparing habitat-use data from tracking against the null hypothesis of no habitat preference is hindered in Shark Bay, as elsewhere, by the difficulty of defining expected habitat use given random movement. We used randomization procedures to generate expected habitat use in the absence of habitat preference and expected habitat use differences among groups (e.g. males and females). We tested the performance of these protocols using simulated data sets with known habitat preferences. 3. The technique correctly classified sets of simulated tracks as displaying a preference or not and was a conservative test for differences in habitat preferences between subgroups of tracks (e.g. males vs. females). 4. Sharks preferred shallow habitats over deep ones, and preferred shallow edge microhabitats over shallow interior ones. The use of shallow edges likely increases encounter rates with potential prey and may have profound consequences for the dynamics of Shark Bay's seagrass ecosystem through indirect effects transmitted by grazers that are common prey of tiger sharks. 5. Females showed a greater tendency to use shallow edge microhabitats than did males; this pattern was not detected by traditional analysis techniques. 6. The randomization procedures presented here are applicable to many field studies that use tracking by allowing researchers both to determine overall habitat preferences and to identify differences in habitat use between groups within their sample.  相似文献   

11.
Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao M(h) ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289-1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling.  相似文献   

12.
The indirect effect of predators on prey behavior, recruitment, and spatial relationships continues to attract considerable attention. However, top predators like sharks or large, mobile teleosts, which can have substantial top–down effects in ecosystems, are often difficult to study due to their large size and mobility. This has created a knowledge gap in understanding how they affect their prey through nonconsumptive effects. Here, we investigated how different functional groups of predators affected potential prey fish populations across various habitats within Biscayne Bay, FL. Using baited remote underwater videos (BRUVs), we quantified predator abundance and activity as a rough proxy for predation risk and analyzed key prey behaviors across coral reef, sea fan, seagrass, and sandy habitats. Both predator abundance and prey arrival times to the bait were strongly influenced by habitat type, with open homogenous habitats receiving faster arrival times by prey. Other prey behaviors, such as residency and risk‐associated behaviors, were potentially driven by predator interaction. Our data suggest that small predators across functional groups do not have large controlling effects on prey behavior or stress responses over short temporal scales; however, habitats where predators are more unpredictable in their occurrence (i.e., open areas) may trigger risk‐associated behaviors such as avoidance and vigilance. Our data shed new light on the importance of habitat and context for understanding how marine predators may influence prey behaviors in marine ecosystems.  相似文献   

13.
Movements of six basking sharks (4.0-6.5 m total body length, L(T)) swimming at the surface were tracked and horizontal velocities determined. Sharks were tracked for between 1.8 and 55 min with between 4 and 21 mean speed determinations per shark track. The mean filter-feeding swimming speed was 0.85 m s(-1) (+/-0.05 S.E., n=49 determinations) compared to the non-feeding (cruising) mean speed of 1.08 m s(-1) (+/-0.03 S.E., n=21 determinations). Both absolute (m s(-1)) and specific (L s(-1)) swimming speeds during filter-feeding were significantly lower than when cruise swimming with the mouth closed, indicating basking sharks select speeds approximately 24% lower when engaged in filter-feeding. This reduction in speed during filter-feeding could be a behavioural response to avoid increased drag-induced energy costs associated with feeding at higher speeds. Non-feeding basking sharks (4 m L(T)) cruised at speeds close to, but slightly faster ( approximately 18%) than the optimum speed predicted by the Weihs (1977) [Weihs, D., 1977. Effects of size on the sustained swimming speeds of aquatic organisms. In: Pedley, T.J. (Ed.), Scale Effects in Animal Locomotion. Academic Press, London, pp. 333-338.] optimal cruising speed model. In contrast, filter-feeding basking sharks swam between 29 and 39% slower than the speed predicted by the Weihs and Webb (1983) [Weihs, D., Webb, P.W., 1983. Optimization of locomotion. In: Webb, P.W., Weihs, D. (Eds.), Fish Biomechanics. Praeger, New York, pp. 339-371.] optimal filter-feeding model. This significant under-estimation in observed feeding speed compared to model predictions was most likely accounted for by surface drag effects reducing optimum speeds of tracked sharks, together with inaccurate parameter estimates used in the general model to predict optimal speeds of basking sharks from body size extrapolations.  相似文献   

14.
Studies of the megamouth shark, one of three planktivorous sharks, can provide information about their evolutionary history. Megamouth shark feeding has never been observed in life animals, but two alternative hypotheses on biomechanics suggest either feeding, i.e., ram feeding or suction feeding. In this study, the second moment of area of the ceratohyal cartilages, which is an indicator of the flexural stiffness of the cartilages, is calculated for 21 species of ram‐ and suction‐feeding sharks using computed tomography. The results indicate that suction‐feeding sharks have ceratohyal cartilages with a larger second moment of area than ram‐feeding sharks. The result also indicates that the ram–suction index, which is an indicator of relative contribution of ram and suction behavior, is also correlated with the second moment of area of the ceratohyal. Considering that large bending stresses are expected to be applied to the ceratohyal cartilage during suction, the larger second moment of area of the ceratohyal of suction‐feeding sharks can be interpreted as an adaptation for suction feeding. Based on the small second moment of area of the ceratohyal cartilage of the megamouth shark, the feeding mode of the megamouth shark is considered to be ram feeding, similar to the planktivorous basking shark. From these results, an evolutionary scenario of feeding mechanics of three species of planktivorous sharks can be suggested. In this scenario, the planktivorous whale shark evolved ram feeding from a benthic suction‐feeding ancestor. Ram feeding in the planktivorous megamouth shark and the basking shark evolved from ram feeding swimming‐type ancestors and that both developed their unique filtering system to capture small‐sized prey. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
Spatio‐temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic‐level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short‐term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.  相似文献   

16.
Omnivores feed on animals with dynamic distributions and on plants with static distributions. The search tactics they adopt will not only define the risk for the targeted prey, but also for other prey that may be consumed when encountered. The potential impact of omnivores on the dynamics of multi‐prey systems thus depends on resource selection and on the tactics used to find their prey. We present an approach that can clarify the foraging decisions of omnivores by combining analyses of habitat selection, local residency time, and interpatch movements. We use this framework to evaluate whether predation by omnivorous black bears on ungulate neonates resulted from an active search or from incidental encounters. We monitored 12 bears, 22 forest‐dwelling caribou, and 36 moose during calving seasons. We estimated the spatial patterns in relative occurrence probability of ungulate neonates using Resource Selection Functions (RSFs). We also mapped plant abundance from vegetation surveys. RSF were then built to assess the link between bear distribution and the distribution of these three food types (vegetation, moose calves, caribou fawns). We further evaluated the search tactic used by bears that led to this spatial dependency by exploring patterns of residency times and interpatch movements. Bears did not select areas with a high probability of encounter with neonates, but selected areas with abundant vegetation. Surprisingly, bears displayed shorter residency times in vegetation‐rich areas. The selection for vegetation‐rich areas was therefore achieved by moving preferentially, but frequently, between areas offering abundant vegetation. Such frequent interpatch movements could result in high rates of fortuitous encounters with neonates, even if bears are not actively searching for them. To mitigate the impacts of forest harvesting on threatened caribou populations, vegetation‐rich areas selected by bears (e.g. roadsides) should be segregated from large patches of mature conifer forest suitable for caribou.  相似文献   

17.
White sharks (Carcharodon carcharias) are threatened apex predators and identification of their critical habitats and how these are used are essential to ensuring improved local and ultimately global white shark protection. In this study we investigated habitat use by white sharks in False Bay, South Africa, using acoustic telemetry. 56 sharks (39 female, 17 male), ranging in size from 1.7–5 m TL, were tagged with acoustic transmitters and monitored on an array of 30 receivers for 975 days. To investigate the effects of season, sex and size on habitat use we used a generalized linear mixed effects model. Tagged sharks were detected in the Bay in all months and across all years, but their use of the Bay varied significantly with the season and the sex of the shark. In autumn and winter males and females aggregated around the Cape fur seal colony at Seal Island, where they fed predominantly on young of the year seals. In spring and summer there was marked sexual segregation, with females frequenting the Inshore areas and males seldom being detected. The shift from the Island in autumn and winter to the Inshore region in spring and summer by females mirrors the seasonal peak in abundance of juvenile seals and of migratory teleost and elasmobranch species respectively. This study provides the first evidence of sexual segregation at a fine spatial scale and demonstrates that sexual segregation in white sharks is not restricted to adults, but is apparent for juveniles and sub-adults too. Overall, the results confirm False Bay as a critical area for white shark conservation as both sexes, across a range of sizes, frequent the Bay on an annual basis. The finding that female sharks aggregate in the Inshore regions when recreational use peaks highlights the need for ongoing shark-human conflict mitigation strategies.  相似文献   

18.
An essential key to explaining the mechanistic basis of ecological patterns lies in understanding the consequences of adaptive behavior for distributions and abundances of organisms. We developed a model that simultaneously incorporates (a) ecological dynamics across three trophic levels and (b) evolution of behaviors via the processes of mutation, selection, and drift in populations of variable, unique individuals. Using this model to study adaptive movements of predators and prey in a spatially explicit environment produced a number of unexpected results. First, even though predators and prey had limited information and sometimes moved in the “wrong” direction, evolved movement mechanisms allowed them to achieve average spatial distributions approximating optimal, ideal free distributions. Second, predators’ demographic parameters had marked, nonlinear effects on the evolution of movement mechanisms in the prey: As the predator mortality rate was increased past a critical point, prey abruptly shifted from making very frequent movements away from predators to making infrequent movements mainly in response to resources. Third, time series analyses revealed that adaptive, conditional movements coupled ecological dynamics across species and space. Our results provide general predictions, heretofore lacking, about how predators and prey should respond to one another on both ecological and evolutionary time scales.  相似文献   

19.
Differences in habitat use by prey and predator may lead to a shift of occupied niches and affect dynamics of their populations. The weasel Mustela nivalis specializes in hunting rodents, therefore habitat preferences of this predator may have important consequences for the population dynamics of its prey. We investigated habitat selection by weasels in the Bia?owie?a Forest in different seasons at the landscape and local scales, and evaluated possible consequences for the population dynamics of their prey. At the landscape scale, weasels preferred open habitats (both dry and wet) and avoided forest. In open areas they selected habitats with higher prey abundance, except during the low-density phase of the vole cycle, when the distribution of these predators was more uniform. Also in winter, the distribution of weasels at the landscape scale was proportional to available resources. In summer, within open dry and wet habitats, weasels preferred areas characterised by dense vegetation, but avoided poor plant cover. In winter, weasels used wet open areas proportionally to availability of habitats when hunting, but in contrast to summer, they rested only in habitats characterized by a lower water level, which offered better thermal conditions. At the local scale, the abundance of voles was a less important factor affecting the distribution of these predators. Although we were not able to provide direct evidence for the existence of refuges for voles, our results show that they may be located within habitat patches, where availability of dense plant cover and physiological constraints limit the activity of weasels. Our results indicate that in complex ecosystems of the temperate zone, characterized by a mosaic pattern of vegetation types and habitat specific dynamics of rodents, impact of weasels on prey populations might be limited.  相似文献   

20.
Conventional and electronic tags were used to investigate social segregation, distribution, movements and migrations of salmon sharks Lamna ditropis in Prince William Sound, Alaska. Sixteen salmon sharks were tagged with satellite transmitters and 246 with conventional tags following capture, and were then released in Prince William Sound during summer 1999 to 2001. Most salmon sharks sexed during the study were female (95%), suggesting a high degree of sexual segregation in the region. Salmon sharks congregated at adult Pacific salmon Oncorhynchus spp. migration routes and in bays near Pacific salmon spawning grounds in Prince William Sound during July and August. Adult Pacific salmon were the principal prey in 51 salmon shark stomachs collected during summer months in Prince William Sound, but the fish appeared to be opportunistic predators and consumed sablefish Anoplopoma fimbria, gadids, Pacific herring Clupea pallasi, rockfish Sebastes spp. and squid (Teuthoidea) even when adult Pacific salmon were locally abundant. As Pacific salmon migrations declined in late summer, the salmon sharks dispersed; some continued to forage in Prince William Sound and the Gulf of Alaska into autumn and winter months, while others rapidly moved south‐east thousands of kilometres toward the west coasts of Canada and the U.S. Three movement modes are proposed to explain the movement patterns observed in the Gulf of Alaska and eastern North Pacific Ocean: ‘focal foraging’ movements, ‘foraging dispersals’ and ‘direct migrations’. Patterns of salmon shark movement are possibly explained by spatio‐temporal changes in prey quality and density, an energetic trade‐off between prey availability and water temperature, intra‐specific competition for food and reproductive success. Transmissions from the electronic tags also provided data on depth and water temperatures experienced by the salmon sharks. The fish ranged from the surface to a depth of 668 m, encountered water temperatures from 4·0 to 16·8° C and generally spent the most time above 40 m depth and between 6 and 14° C (60 and 73%, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号