首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two proteolytic enzymes, protease A and protease B, were isolated in homogeneous state from the cultural broth of the thermophilic actinomycete Micromonospora vulgaris 42. Their physicochemical properties were studied, i.e., molecular weight (50 000 for protease A and 30 000 for protease B), amino acid composition, N-terminal amino acids (phenylalanine for protease A and alanine for protease B). The specificity of the action of these enzymes was assayed by splitting the B chain of oxidized insulin. Both enzymes are neutral proteases of the thermolysine type.  相似文献   

2.
The high molecular weight protein was isolated from rapeseed and characterised. Six subunits were isolated in SDS (0.01%) solution on polyacrylamide-gel electrophoresis and by gel filtration on Sephadex G-100. Reassociation by removing SDS by co-dialysis, against 10 mM sodium phosphate buffer (pH 7.9) was done and the yield was about 90%. The reconstituted protein was indistinguishable from the intact protein in all respects. The subunits isolated from the native protein and the reconstituted protein were found to have identical molecular weights and N-terminal amino acids. No disulphide bonds were observed in the subunit association. Amino acid analysis of the proteins and the six subunits was performed and the number of each amino acid residue calculated.  相似文献   

3.
The highly active form of collagenase (EC 3.4.24.3) from Achromobacter iophagus (specific activity 2 microkat/mg) has a molecular weight of 70,000 and the sedimentation coefficient s20,2 = 4.4 S. It is composed of two subunits of molecular weight 35,000 and s20,w of 2.9 S. The dissociation of the dimer under different conditions resulted in the complete and irreversible loss of enzymic activity. A unique N-terminal sequence Thr-Ala-Ala-Asp-Leu-Glu-Ala-Leu-Val- indicates that the two subunits are identical, at least in the N-terminal part of the polypeptide chain. Reduction and pyridylethylation of the subunit change neither molecular weight nor amino acid composition: therefore each subunit of molecular weight 35,000 consists of a single polypeptide chain. Another active and homogeneous form of Achromobacter collagenase (specific activity 1.64 microkat/mg) gives a value for the apparent molecular weight of 80,000 on sodium dodecyl sulphate-polyacrylamide electrophoresis. It is also a dimer in which each of the two subunits of molecular weight 35,000 binds non-covalently a peptide of molecular weight 5000. The dissociation of this form of collagenase is also accompanied by irreversible loss of enzymic activity. The amino acid composition of the subunits which were isolated from both 70,000 and 80,000 collagenases is the same. The role of dimer-monometer equilibrium in the biological function of collagenase is discussed.  相似文献   

4.
Isolation of a third bovine neurophysin   总被引:11,自引:8,他引:3       下载免费PDF全文
1. A third native hormone-binding protein, neurophysin-C, has been isolated from acetone-desiccated bovine pituitary posterior lobes. 2. This protein was detected in lysates of neurosecretory granules isolated from bovine pituitary posterior lobes. 3. The molecular weight appears to be close to 10000. 4. Neurophysin-C is similar in amino acid composition to neurophysin-I and -II; it contains a single residue of tyrosine and of methionine. The N-terminal amino acid in all three neurophysins is alanine. 5. Neurophysin-C accounts for approximately 15% of the total hormone-binding protein present in the pituitary posterior lobes. 6. The new neurophysin forms complexes with oxytocin as well as with [8-arginine]-vasopressin. The complex with vasopressin has been crystallized. 7. Bioassay of the pressor and oxytocic activities of the protein-hormone complexes shows that neurophysin-C binds one molecule of either vasopressin or oxytocin.  相似文献   

5.
M E Marsh 《Biochemistry》1986,25(9):2392-2396
Native mineral-containing phosphoprotein particles were isolated from the Heterodont bivalve Macrocallista nimbosa. The native particles are discrete structures about 40 nm in diameter which migrate as a single band during electrophoresis in agarose gels. Removal of the mineral component with ethylenediaminetetraacetic acid dissociates the native protein into nonidentical subunits. The lower molecular weight subunits, representing 8% of the total protein, were obtained by differential centrifugation. The native protein is characterized by a high content of aspartic acid, phosphoserine, phosphothreonine, histidine, and the bifunctional cross-linking residue histidinoalanine. The low molecular weight subunits have the same amino acid composition except for a reduction in histidinoalanine and a corresponding increase in phosphoserine and histidine residues, demonstrating that the alanine portion of the cross-link is derived from phosphoserine residues. Ion-exchange chromatography and molecular sieve chromatography show that the low molecular weight subunits have a similar charge density but differ in molecular weight, and the relative mobilities of the subunits on agarose gels indicate that they are polymers of a single phosphoprotein molecule. The minimum molecular weight of the monomer is about 140 000 on the basis of the amino acid composition. The high molecular weight subunits are rich in histidinoalanine and too large to be resolved by either molecular sieve chromatography or gel electrophoresis. On the basis of the ultrastructural, electrophoretic, chromatographic, and compositional evidence, native phosphoprotein particles are composed of subunits ionically cross-linked via divalent cations. These subunits are variable molecular weight aggregates of a single phosphoprotein molecule covalently cross-linked via histidinoalanine residues. Evidence for a nonenzymatic cross-linking mechanism is discussed.  相似文献   

6.
A clottable protein, named coagulogen, was highly purified from the amoebocyte lysate of Japanese horseshoe crab (Tachypleus tridentatus) by a method similar to that used for the lysate of Limulus polyphemus amoebocytes. The isolated material gave a single protein band on analytical gel electrophoresis at pH 3.2, gel electrofocusing, and sodium dodecyl sulfate (SDS) gel electrophoresis with or without 2-mercaptoethanol. It was 90 percent coagulable, and the total yield from 10 ml of the amoebocyte lysate was about 40 mg. The sedimentation coefficient of purified coagulogen was 2.6 S and its molecular weight was estimated to be about 15,300 by sedimentation equilibrium analysis. The molecular weight estimated by SDS-gel electrophoretic analysis was 19,500 +/- 1,000. This discrepancy was apparently due to abnormal mobility arising from the basic nature of this protein on electrophoresis. The protein had a high isoelectric point of pH 10.0 +/- 0.2, as measured by the isoelectric focusing technique. It consisted of a total of 132 to 135 amino acid residues and contained high levels of basic amino acids, which accounted for more than 16 per cent of the total amino acid residues. No methionine was detected. High contents of valine, half-cystine, glutamic acid (glutamine), and phenylalanine were found. The N-terminal sequence of the first three residues of the coagulogen was Ala-Asx-Thr, and its C-terminal residues was identified as phenylalanine, indicating that it consists of a single polypeptide chain. It is of interest that the first three N-terminal residues are homologous with those of the Aalpha-chain of non-human primate fibrinogen.  相似文献   

7.
The enzyme complex F1-ATPase has been isolated from bovine heart mitochondria by gel filtration of the enzyme released by chloroform from sub-mitochondrial particles. The five individual subunits alpha, beta, gamma, delta and epsilon that comprise the complex have been purified from it, and their amino acid sequences determined almost entirely by direct protein sequence analysis. A single overlap in the gamma-subunit was obtained by DNA sequence analysis of a complementary DNA clone isolated from a bovine cDNA library using a mixture of 32 oligonucleotides as the hybridization probe. The alpha, beta, gamma, delta and epsilon subunits contain 509, 480, 272, 146 and 50 amino acids, respectively. Two half cystine residues are present in the alpha-subunit and one in each of the gamma- and epsilon-chains; they are absent from the beta- and delta-subunits. The stoichiometry of subunits in the complex is estimated to be alpha 3 beta 3 gamma 1 delta 1 epsilon 1 and the molecular weight of the complex is 371,135. Mild trypsinolysis of the F1-ATPase complex, which has little effect on the hydrolytic activity of the enzyme, releases peptides from the N-terminal regions of the alpha- and beta-chains only; the C-terminal regions are unaffected. Sequence analysis of the released peptides demonstrates that the N terminals of the alpha- and beta-chains are ragged. In 65% of alpha-chains, the terminus is pyrrolidone carboxylic acid; in the remainder this residue is absent and the chains commence at residue 2, i.e. lysine. In the beta-subunit a minority of chains (16%) have N-terminal glutamine, or its deamidation product, glutamic acid (6%), or the cyclized derivative, pyrrolidone carboxylic acid (5%). A further 28% commence at residue 2, alanine, and 45% at residue 3, serine. The delta-chains also are heterogeneous; in 50% of chains the N-terminal alanine residue is absent. The sequences of the alpha- and beta-chains show that they are weakly homologous, as they are in bacterial F1-ATPases. The sequence of the bovine delta-subunit of F1-ATPase shows that it is the counterpart of the bacterial epsilon-subunit. The bovine epsilon-subunit is not related to any known bacterial or chloroplast H+-ATPase subunit, nor to any other known sequence. The counterpart of the bacterial delta-subunit is bovine oligomycin sensitivity conferral protein, which helps to bind F1 to the inner mitochondrial membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
用SDS-PAGE制备电泳技术结合一种新的凝胶中蛋白质显色方法,对普通小麦(Triticum aestivum)小偃六号的高分子量麦谷蛋白14和15亚基进行了有效的分离纯化,将其转印于PVDF膜上测定了N-端的氨基酸顺序,通过比较了发现它们与已知序列的其他的高分子是麦谷蛋白亚基高度同源。用两种双向电泳技术确定了它们的等电点(PI)属于碱性范围。  相似文献   

9.
A low molecular weight (approximately 6000) polypeptide fraction was isolated from beef heart cytochrome c oxidase, consisting of three peptides with the N-terminal end groups isoleucine, phenylalanine and serine. The complete amino acid sequence of the serine component is described. From the chemical constitution, a site-specific cleavage from a precursor protein and a possible function in membrane penetration and complex formation of the oxidase is inferred.  相似文献   

10.
The Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system consists of three components: a membrane-bound enzyme II, a soluble phosphocarrier protein (HPr), and a soluble enzyme I. The soluble enzyme I was purified by ammonium sulfate fractionation; Bio-Gel P-10 gel filtration; acid precipitation; diethylaminoethyl-Bio-Gel A; and Bio-Gel HTP column chromatography. The enzyme I was shown to be homogeneous by electrophoresis in a pH 8.9 non-sodium dodecyl sulfate gel and by isoelectric focusing. Whereas the protein moved as a single component in both the non-sodium dodecyl sulfate gel and isoelectric focusing, on sodium dodecyl sulfate gels, it moved as three subcomponents. The molecular weights of the three subunits, alpha, beta, and gamma, were 44,500, 62,000 and 64,500, respectively. The holoprotein moved as a single component, in the region of 220,000 daltons, in a Bio-Gel A 0.5-agarose column. The molar ratio of subunits was estimated to be 2alpha:1beta:1gamma. The elution characteristics on a diethylaminoethyl column at pH 7.4 and 6.8, acid precipitation data, and amino acid composition indicated that the protein is acidic. Isoelectric focusing occurred at pH 4.8. N-terminal amino acids determined by the dansyl chloride method indicated that glycine, alanine, and tyrosine are N-terminal amino acids of the three subunits. Although the protein was stable for at least 14 months at -20 degrees C, it was irreversibly inactivated by the thiol reagent N-ethyl-maleimide.  相似文献   

11.
1. Three very similar proteins, each of approx. 120 amino acid residues but lacking phenylalanine and histidine, were isolated from wheat (Triticum aestivum) flour in sufficient quantities for further structural studies. 2. Each protein, after reduction and carboxymethylation, was cleaved at the three methionine residues with CNBr to give four major peptides, which were isolated. These peptides are suitable for future sequencing studies, as the sums of their amino acid compositions are in good agreement with those of the whole proteins. 3. The N- and C-terminal peptides were identified. 4. Evidence from amino acid analyses, N-terminal amino acids and electrophoretic mobilities of the peptides suggests a high degree of homology between the proteins. Definite differences in C-terminal amino acids and the number of glycine, alanine and arginine residues were found in the C-terminal peptides.  相似文献   

12.
An NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC. 1.2.1.12) has been purified from spinach leaves as a homogeneous protein of 150,000 daltons. Kinetic constants of 2.5 . 10(-4) M and 4 . 10(-4) M have been calculated for NAD+ and glyceraldehyde-3-phosphate, respectively. The amino acid composition is characterized by a cysteine content higher than that found in analogous enzymes. On sodium dodecyl sulphate gel electrophoresis, the native enzyme dissociates into two subunits of 37,000 and 14,000 daltons. The two subunits have been isolated in equimolar amounts by gel filtration; end-group analysis shows that alanine is the N-terminal residue of the large subunit, while serine is found at the N-terminus of the small subunit. Comparison of amino acid analysies and peptide maps shows that the two subunits have a different amino acid sequence. These results indicate that the NAD+-dependent glyceraldehyde-3-phosphate, dehydrogenase, isolated from spinach leaves has an atypical oligomeric structure, the protomer being formed by two different subunits.  相似文献   

13.
Two forms of phenylalanine:pyruvate transaminase (EC 2.6.1. aminotransferases, the exact EC number has not been assigned) termed A and B were obtained from the liver supernatant fraction of glucagon-treated rats by DEAE-Sephadex A-50 column chromatography. Each of the two forms was further purified by hydroxylapatite, Sephadex G-100 chromatography, and preparative gel electrophoresis. Both the A and B forms have been purified to homogeneity as judged by analytical and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Moreover, histidine was found to be a competitive inhibitor of phenylalanine with both purified proteins. These findings conclusively support the view that phenylalanine:pyruvate transaminase and histidine:pyruvate transaminase reactions are catalyzed by the same protein. The overall purification was 710-fold for the A form and 1200-fold for the B form. The apparent molecular weight for both A and B are 74,000 ±6000 as determined by gel filtration. Sodium dodecyl sulfate gel electrophoresis revealed that the A form has two identical subunits of molecular weight 42,000, whereas the B form has two nonidentical subunits of molecular weight 42,000 and 44,000. The amino acid composition for the A and B forms of the enzyme are different. The major differences are in glycine, alanine and leucine. The isoelectric point for A was 7.8 and for B was 7.3. However, the A and B forms of the enzyme are of immunological identity. The substrate specificity determined for both the A and B form was phenylalanine >asparagine >alanine >leucine >histidine. The Km for phenylalanine was 7.70 mm for the A form, 6.00 mm for the B form. For histidine, the Km was 13.70 mm for the A form, 12.50 mm for the B form.  相似文献   

14.
As part of the preliminary work for the structural elucidation of cytochrome c oxidase, the enzyme complex was isolated from bovine heart muscle and characterised chemically. The enzyme contains 10-11 nmol haem a, and 12-13 nmol copper per mg protein. The solubilised active enzyme also contains 5% phospholipid, comprising about 2 mol each of cardiolipin and phosphatidylethanolamine per mol haem a. In addition, the preparation contains a small number of detergent molecules (Tween-80). Eight polypeptide components were isolated by preparative dodecylsulphate gel electrophoresis, gel filtration on Biogel P-60, and counter current distribution. The apparent molecular weights of these components were I - 36 000, II - 28 000 (21 000), III - 19 000, IV - 14 000, V - 12 500, VI - 11 000, VII - 10 000 and VIII - 6000. At least seven intact polypeptide chains contribute to the structure of the enzyme complex of the terminal oxidase. On the basis of amino acid analysis and end group determination, they can be divided into two groups. The high molecular weight peptides I -III are hydrophobic and their amino acid compositions differ markedly from those of known enzyme proteins, especially with respect to their contents of leucine and methionine. Components I and II have formyl methionine at their N-termini. They are therefore possibly mitochondrial membrane components from complex 4 of the respiratory chain. Polypeptides IV - VII resemble functional enzyme subunits in their amino acid composition. Some of them possess free N-termini (alanine). The low molecular weight component VIII is heterogeneous and contains the N-terminal amino acids isoleucine, serine and phenylelanine in non-stoichiometric amounts. Analysis gives a minimal protein molecular weight of 130 000 (65 000 per haem a) for the two haem and two copper-containing "monomers". The molecular weight of the moiety preliminarily defined as enzymatic is about 48 000. The chemical characterisation provides data for the strategy of the subsequent sequence analysis of the polypeptides.  相似文献   

15.
Chemistry of axial filaments of Treponema zuezerae   总被引:10,自引:3,他引:7       下载免费PDF全文
Highly purified axial filaments have been prepared from the spirochete Treponema zuelzerae, which possess a fine structure similar to the "beaded" form of bacterial flagella. The preparations consist largely of protein but also contain small amounts of hexose (less than 1%). The buoyant density of these filaments is 1.29 g/cm(3). At pH 4.3, in the presence of 4 m urea and 10(-3)m ethylenediaminetetraacetic acid, filament protein migrates as a single band in acrylamide gel electrophoresis. Filaments dissociate to subunits in acid, alkali, urea, guanidine or with heating, indicating that these subunits are not covalently bonded in the organized structure. This is consistent with amino acid analysis which reveals that, like bacterial flagella, the filaments are completely lacking in half-cystine. Sedimentation equilibrium measurements on dissociated axial filaments in 6 m guanidine show that the subunits are homogeneous with respect to molecular weight. A weight-average molecular weight of 37,000 +/- 1,600 daltons is obtained from these measurements. The amino acid composition of axial filaments is similar to that of various types of flagellin molecules, but the filament protein is somewhat richer in tyrosine, phenylalanine, and proline than flagellin. Tryptic peptide maps of axial filaments are consistent with the amino acid composition calculated for a molecular weight of 37,000 daltons. No amino terminal end group could be detected by the dansyl chloride method, suggesting that this end group might be blocked in the axial filament protein. The results obtained show that the axial filaments of T. zuelzerae are similar chemically to bacterial flagella and suggest that they are composed of aggregates of a single species of protein subunit.  相似文献   

16.
A highly purified preparation of glutamine synthetase from chlorella grown on a medium containing nitrate as a sole source of nitrogen, was isolated and characterized by disc-electrophoresis and analytical ultracentrifugation. The N-terminal amino acid of glutamine synthetase is glycine. The molecular weight of glutamine synthetase is 32.000; its activity in the presence of Mg2+ was 150 mkmol o-phosphate per min per mg protein. The molecular weight of subunits of the enzyme, equal to 53.000 was determined by disc-electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. Electron microscopy of negatively contrasted enzyme preparations revealed 6 subunits in the enzyme molecule, arranged in a point symmetry group 32.  相似文献   

17.
The photoreaction center from Rhodospirillum rubrum contains about 90% protein, 6% pigment, mere traces of lipids, and no cytochromes. It also contains at least 1 mol of ubiquinone and 1 iron atom per mol. Its three-component polypeptide chains were isolated by preparative electrophoresis, and their molar stoichiometry was established as 1:1:1. The amino acid composition of the photoreaction center from strain S1 and from its subunits is reported. The protein as a whole contains about 65% nonpolar residues, and the degree of hydrophobicity of its subunits is alpha less than beta less than gamma. The minimal molecular weight based on the extinction coefficient and on the amino acid content is 90 000. This corresponds to a half-cystine mole number of 6.  相似文献   

18.
Four kinds of acidic subunits and three kinds of basic subunits of 11S globulin were separated by polyacryl amide gel electrophoresis in the urea system. The four acidic subunits designated as A1, A2, A3 and A4 (Rm=0.35, 0.40, 0.46 and 0.56 respectively) were isolated by stepwise elution followed by repeating gradient elution with DEAE-Sephadex A-50 in the presence of 6 m urea at 5°C.

Subsequently, some physico-chemical properties of the subunits were determined. For example, N-terminal amino acids were determined as phenylalanine for both A1 and A2 and as leucine (or isoleucine) for both A3 and A4 by the DNP-amino acid method. The molecular weights of A1, A2 and A3 were shown as 37,000 and 45,000 for A4 by SDS-gel electrophoresis. The amino acid compositions of the acidic subunits were roughly similar to each other, but some remarkable differences were observed in the content of basic amino acids (lysine, histidine and arginine), serine and proline.  相似文献   

19.
Two neutrophil chemotactic factors were isolated from the culture filtrates of Streptococcus sanguis ATCC 10556 and were chemically characterized as N-terminal blocked peptides of low molecular weight. One of the factors consisted of proline, valine, methionine, isoleucine and leucine and the other of methionine, isoleucine, leucine and phenylalanine. In both factors, methionine was detected as the sole N-terminal amino acid, but the amino group was blocked. The removal of N-terminal methionine yielded several N-terminal amino acids, suggesting that S. sanguis produced several N-terminal blocked methionyl peptides, all of which could be chemotactically active.  相似文献   

20.
cDNA clones for two subunits (designated subunits K and L) of rat liver multicatalytic proteinase (MCP) were isolated using oligonucleotide probes synthesized according to their partial amino acid sequences. The encoded polypeptides of subunits K and L consisted of 255 and 261 amino acid residues with calculated molecular mass of 28.3 kDa and 29.5 kDa, respectively. Northern blot analysis revealed that subunits K and L were expressed in all tissues examined and their expression patterns were almost identical. The deduced amino acid sequences showed no similarities to known protein sequences other than the recently reported sequences of rat and Drosophila MCP subunits. Sequence comparison of MCP subunits of rat and Drosophila revealed that the N-terminal two-thirds of the sequence (especially the N-terminal approximately 20 residues) is conserved, but the C-terminal third of the sequence shows no similarity, suggesting functional and structural roles for both regions. Implications for the structural and functional aspects of MCP subunits are discussed based on the sequence similarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号