首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNase gamma, a member of the DNase I family, has been suggested to cause DNA fragmentation during apoptosis. We recently identified 4-(4,6-dichloro-[1,3,5]-triazine-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DR396) as a novel specific inhibitor for human DNase gamma [Sunaga, S.; Kobayashi, T.; Yoshimori, A.; Shiokawa, D.; Tanuma, S. Biochem. Biophys. Res. Commun.2004, 325, 1292]. However, the binding mode (coordinate) of DR396 to DNase gamma has not yet been defined. Here, we examined the molecular basis for the inhibitory activity of DR396 to DNase gamma by structure-based computational docking studies. In the blind-docking study using a human DNase gamma homology model, a unique binding site of DR396 was predicted, which is tentatively named the 'DNA trapping site' because of the binding domain of the unhydrolyzed DNA strand, but not the active site. Targeting the DNA trapping site as a hot spot, new human DNase gamma inhibitors were obtained from our diverse chemical library in silico. These inhibitors showed high correlations between their predicted binding-free energies (DeltaGs) and observed IC50 values in the DNA trapping site but not the active site. The IC50 of a regioisomer of DR396, 5-(4,6-dichloro-[1,3,5]-triazine-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DF365), was 73 microM (DeltaG=-9.75 kcal/mol), a 20-fold weaker inhibitory ability than that of DR396 (IC50=3.2 microM, DeltaG=-11.22 kcal/mol). Fluorescein and triazine derivatives, partial structures of DR396, had little inhibitory activity for DNase gamma. Docking analyses of the interaction between DR396 and DNase gamma revealed that DR396 binds tightly to three subsites (S1, S2, and S3) in the trapping site of DNase gamma by forming six hydrogen bonds, whereas DF365 and the partial structures are unable to form hydrogen bonds at all three subsites. These findings suggest that the specificity and potency of the inhibitory activity of DR396 for DNase gamma is due to the specific interaction of DR396 with three subsites in the DNA trapping site of DNase gamma.  相似文献   

3.
In this study, we investigate the roles of two apoptotic endonucleases, CAD and DNase gamma, in neuronal apoptosis. High expression of CAD, but not DNase gamma, is detected in proliferating N1E-115 neuroblastoma cells, and apoptotic DNA fragmentation induced by staurosporine under proliferating conditions is abolished by the expression of a caspase-resistant form of ICAD. After the induction of neuronal differentiation, CAD disappearance and the induction of DNase gamma occur simultaneously in N1E-115 cells. Apoptotic DNA fragmentation that occurs under differentiating conditions is suppressed by the downregulation of DNase gamma caused by its antisense RNA. The induction of DNase gamma is also observed during neuronal differentiation of PC12 cells, and apoptotic DNA fragmentation induced by NGF deprivation is inhibited by the antisense-mediated downregulation of DNase gamma. These observations suggest that DNA fragmentation in neuronal apoptosis is catalyzed by either CAD or DNase gamma depending on the differentiation state. Furthermore, DNase gamma is suggested to be involved in naturally occurring apoptosis in developing nervous systems.  相似文献   

4.
Somatic hypermutation (SHM) of immunoglobulin variable (V) region genes occurs in the germinal center (GC) B cells during immune responses, depending on activation-induced cytidine deaminase (AID). SHM is associated with resected double-strand DNA breaks (DSBs) which were shown to occur specifically in rearranged V regions in the GC B cells and CD40-stimulated B cells expressing AID. So far, endonucleases responsible for the DSBs have not been identified. Here we show that DNase gamma, a member of DNase I family of endonucleases, is expressed in GC B cells and CD40-stimulated B cells. Overexpression of DNase gamma in the mutation-competent Ramos B-cell line resulted in a marked increase in the resected but not blunt DSBs in the V region. Conversely, a selective DNase gamma inhibitor, DR396, suppressed the generation of the resected DSBs. These results suggest that DNase gamma is involved in the generation of resected DSBs associated with SHM.  相似文献   

5.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   

6.
Here, we describe the non-redundant roles of caspase-activated DNase (CAD) and DNasegamma during apoptosis in the immature B-cell line WEHI-231. These cells induce DNA-ladder formation and nuclear fragmentation by activating CAD during cytotoxic drug-induced apoptosis. Moreover, these apoptotic manifestations are accompanied by inhibitor of CAD (ICAD) cleavage and are abrogated by the constitutive expression of a caspase-resistant ICAD mutant. No such nuclear changes occur during oxidative stress-induced necrosis, indicating that neither CAD nor DNasegamma functions under necrotic conditions. Interestingly, the DNA-ladder formation and nuclear fragmentation induced by B-cell receptor ligation occur in the absence of ICAD cleavage and are not significantly affected by the ICAD mutant. Both types of nuclear changes are preceded by the upregulation of DNasegamma expression and are strongly suppressed by 4-(4,6-dichloro-[1, 3, 5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid (DR396), which is a specific inhibitor of DNasegamma. Our results suggest that DNasegamma provides an alternative mechanism for inducing nuclear changes when the working apoptotic cascade is unsuitable for CAD activation.  相似文献   

7.
Oligonucleosomal fragmentation of nuclear DNA is the late-stage apoptosis hallmark. In apoptotic mammalian cells the fragmentation is catalyzed by DFF40/CAD DNase primarily activated by caspase 3 through the site-specific proteolytic cleavage of DFF45/ICAD. A deletion in the casp3 gene of human breast adenocarcinoma MCF-7 results in lack of procaspase 3 in these cells. The absence of caspase 3 in MCF-7 leads to disability to activate oligonucleosomal DNA fragmentation in TNF-alpha induced cell death. In this study, sodium palmitate was used as an apoptotic stimulus for MCF-7. It has been shown that palmitate but not TNF-alpha induces both apoptotic changes in nuclei and oligonucleosomal DNA fragmentation in casp3-mutated MCF-7. Activation and accumulation of 40-50 kD DFF40-like DNases in nuclei of palmitate-treated apoptotic MCF-7 were detected by SDS-DNA-PAGE assay. Microsomal fraction of apoptotic MCF-7 does not contain any detectable DNases, but activates 40-50 kD nucleases when incubated with human placental chromatin. Furthermore, microsomes of apoptotic MCF-7 induce oligonucleosomal fragmentation of chromatin in a cell-free system. Both the activation of DNases and chromatin fragmentation are suppressed in the presence of the caspase 3/7 inhibitor Ac-DEVD-CHO. Microsome-associated caspase 7 is suggested to play an essential role in the induction of oligonucleosomal DNA fragmentation in casp3-deficient MCF-7 cells.  相似文献   

8.
DNase , which cleaves chromosomal DNA into nucleosomal units (DNA ladder formation), has been suggested to be the critical component of apoptotic machinery. Using rat pheochromocytoma PC12 cells, which are differentiated to sympathetic neurons by nerve growth factor (NGF), we investigated whether DNase -like enzyme is present in neuronal cells and is involved in neuronal cell death. The nuclear auto-digestion assay for DNase catalyzing internucleosomal DNA cleavage revealed that nuclei from neuronal differentiated PC12 cells contain acidic and neutral endonucleases, while nuclei from undifferentiated PC12 cells have only acidic endonuclease. The DNA ladder formation observed in isolated nuclei from neuronal differentiated PC12 cells at neutral pH requires both Ca2+ and Mg2+, and is sensitive to Zn2+. The molecular mass of the neutral endonuclease present in neuronal differentiated PC12 cell nuclei is 32000 as determined by activity gel analysis (zymography). The properties of the neuronal endonuclease present in neuronal differentiated PC12 cell nuclei were similar to those of purified DNase from rat thymocytes and splenocytes. Interestingly, in neuronal differentiated PC12 cells, internucleosomal DNA fragmentation is observed following NGF deprivation, whereas undifferentiated PC12 cells fail to exhibit DNA ladder formation during cell death by serum starvation. These results suggest that the DNase -like endonuclease present in neuronal differentiated PC12 cell nuclei is involved in internucleosomal DNA fragmentation during apoptosis, induced by NGF deprivation.  相似文献   

9.
The internucleosomal cleavage of genomic DNA is a biochemical hallmark of apoptosis. DNase gamma, a Mg2+/Ca2+-dependent endonuclease, has been suggested to be one of the apoptotic endonucleases, but its biochemical characteristic has not been fully elucidated. Here, using recombinant DNase gamma, we showed that DNase gamma is a Mg2+/Ca2+-dependent single-stranded DNA nickase and has a high activity at low ionic strength. Under higher ionic strength, such as physiological buffer conditions, the endonuclease activity of DNase gamma is restricted, but its activity is enhanced in the presence of linker histone H1, which explains DNA cleavage at linker regions of apoptotic nuclei.  相似文献   

10.
DFF ((DNA Fragmentation Factor) is a heterodimer composed of 40 kDa (DFF40, CAD) and 45 kDa (DFF45, ICAD) subunits. During apoptosis, activated caspase-3 cleaves DFF45 and activates DFF40, a DNase that targets nucleosomal linker region and cleaves chromatin DNA into nucleosomal fragments. We have previously reported that HT induced apoptosis in HL-60 cells, and intracellular Ca2+ chelator BAPTA blocked apoptosis-associated DNA fragmentation induced by HT. We report here that HT also induced activation of caspase-3 and cleavage of DFF45. BAPTA prevented neither the caspase-3 activation nor the cleavage of DFF45. Mitochondrial membrane potential was disrupted in BAPTA-AM treated cells. However, BAPTA did prevent DNA fragmentation and chromatin condensation in HT-treated cells. These data suggest a novel role for intracellular calcium in regulating apoptotic nuclease that causes DNA fragmentation and chromatin condensation.  相似文献   

11.
12.
13.
The physiological and pathological importance of cell death by apoptosis has recently been recognized. One of the hallmarks of apoptosis is the enzymatic cleavage of genomic DNA into nucleosomal oligomers. The identification of an endonuclease responsible for apoptosis might help to explain how this cell suicide is regulated and why DNA is cleaved. Here, we found that γ type of DNase was retained in apoptotic rat thymocyte nuclei. Homogeneously purified DNase γ (Mr = 33 kDa) from the apoptotic nuclei was revealed to be a Ca2+/Mg2+-dependent endonuclease and inhibited by Zn2+. This enzyme cleaved chromosomal DNA with 3′-hydroxyl (OH) and 5′-phosphoryl (P) ends. The cleavage ends and its divalent cation dependencies match those observed in apoptotic thymocytes induced by X-irradiation or glucocorticoid treatment, indicating that this endonuclease is a central component of the thymic apoptosis machinery.  相似文献   

14.
We have previously shown that inhibition of catalase and glutathione peroxidase activities by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS), respectively, in rat primary hepatocytes caused sustained endogenous oxidative stress and apoptotic cell death without caspase-3 activation. In this study, we investigated the mechanism of this apoptotic cell death in terms of nucleosomal DNA fragmentation. Treatment with ATZ+MS time-dependently increased the number of deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL)-positive nuclei from 12 h, resulting in clear DNA laddering at 24 h. The deoxyribonuclease (DNase) inhibitor, aurintricarboxylic acid (ATA), completely inhibited nucleosomal DNA fragmentation but the pan-caspase inhibitor, z-VAD-fmk was without effects; furthermore, the cleavage of inhibitor of caspase-activated DNase was not detected, indicating the involvement of DNase(s) other than caspase-activated DNase. Considering that endonuclease G (EndoG) reportedly acts in a caspase-independent manner, we cloned rat EndoG cDNA for the first time. Recombinant EndoG alone digested plasmid DNA and induced nucleosomal DNA fragmentation in isolated hepatocyte nuclei. Recombinant EndoG activity was inhibited by ATA but not by hydrogen peroxide, even at 10 mm. ATZ+MS stimulation elicited decreases in mitochondrial membrane potential and EndoG translocation from mitochondria to nuclei. By applying RNA interference, the mRNA levels of EndoG were almost completely suppressed and the amount of EndoG protein was decreased to approximately half the level of untreated cells. Under these conditions, decreases in TUNEL-positive nuclei were significantly suppressed. These results indicate that EndoG is responsible, at least in part, for nucleosomal DNA fragmentation under endogenous oxidative stress conditions induced by ATZ+MS.  相似文献   

15.
Diverse stimuli initiate the activation of apoptotic signaling pathways that often causes nuclear DNA fragmentation. Here, we report a new antiapoptotic protein, a caspase-activated DNase (CAD) inhibitor that interacts with ASK1 (CIIA). CIIA, by binding to apoptosis signal-regulating kinase 1 (ASK1), inhibits oligomerization-induced ASK1 activation. CIIA also associates with CAD and inhibits the nuclease activity of CAD without affecting caspase-3-mediated ICAD cleavage. Overexpressed CIIA reduces H2O2- and tumor necrosis factor-alpha-induced apoptosis. CIIA antisense oligonucleotides, which abolish expression of endogenous CIIA in murine L929 cells, block the inhibitory effect of CIIA on ASK1 activation, deoxyribonucleic acid fragmentation, and apoptosis. These findings suggest that CIIA is an endogenous antagonist of both ASK1- and CAD-mediated signaling.  相似文献   

16.
Disintegration of nuclear DNA into high molecular weight (HMW) and oligonucleosomal DNA fragments represents two major periodicities of DNA fragmentation during apoptosis. These are thought to originate from the excision of DNA loop domains and from the cleavage of nuclear DNA at the internucleosomal positions, respectively. In this report, we demonstrate that different apoptotic insults induced apoptosis in NB-2a neuroblastoma cells that was invariably accompanied by the formation of HMW DNA fragments of about 50-100 kb but proceeded either with or without oligonucleosomal DNA cleavage, depending on the type of apoptotic inducer. We demonstrate that differences in the pattern of DNA fragmentation were reproducible in a cell-free apoptotic system and develop conditions that allow in vitro separation of the HMW and oligonucleosomal DNA fragmentation activities. In contrast to apoptosis associated with oligonucleosomal DNA fragmentation, the HMW DNA cleavage in apoptotic cells was accompanied by down-regulation of caspase-activated DNase (CAD) and was not affected by z-VAD-fmk, suggesting that the caspase/CAD pathway is not involved in the excision of DNA loop domains. We further demonstrate that nonapoptotic NB-2a cells contain a constitutively present nuclease activity located in the nuclear matrix fraction that possessed the properties of topoisomerase (topo) II and was capable of reproducing the pattern of HMW DNA cleavage that occurred in apoptotic cells. We demonstrate that the early stages of apoptosis induced by different stimuli were accompanied by activation of topo II-mediated HMW DNA cleavage that was reversible after removal of apoptotic inducers, and we present evidence of the involvement of topo II in the formation of HMW DNA fragments at the advanced stages of apoptosis. The results suggest that topo II is involved in caspase-independent excision of DNA loop domains during apoptosis, and this represents an alternative pathway of apoptotic DNA disintegration from CAD-driven caspase-dependent oligonucleosomal DNA cleavage.  相似文献   

17.
Ultraviolet light (UV) induced rapid apoptosis of U937 leukemia cells, concurrent with DNA fragmentation and cleavage of poly(ADP-ribose)polymerase (PARP) by activated caspase-3. Thein vitroreconstitution of intact HeLa S3 nuclei and apoptotic U937 cytosolic extract (CE) revealed that (i) Ca2+/Mg2+-dependent, Zn2+-sensitive endonuclease activated in the apoptotic CE induced DNA ladder in HeLa nuclei at pH 6.8–7.4, (ii) activated caspase-3 cleaved PARP in HeLa nuclei, and (iii) when the apoptotic CE was treated with the caspase-3 inhibitor (1 μM Ac-DEVD-CHO) or the caspase-1 inhibitor (10 μM Ac-YVAD-CHO), the former, but not the latter, caused a 50% inhibition of DNA fragmentation and the complete inhibition of PARP cleavage in HeLa nuclei. Similarly, Ac-DEVD-CHO (100 μM) inhibited apoptosis and DNA ladder by 50% and PARP cleavage completely in UV-irradiated U937 cells, but Ac-YVAD-CHO (100 μM) did not. Thus, UV-induced apoptosis of U937 cells involves the Ca2+/Mg2+-dependent endonuclease pathway and the caspase-3–PARP cleavage–Ca2+/Mg2+-dependent endonuclease pathway. The former pathway produced directly 50% of apoptotic DNA ladder, and the latter involved activated caspase-3 and PARP cleavage, followed by formation of the remaining 50% DNA ladder by the activated endonuclease. In UV-irradiated B-cell lines, further, p53-dependent increase of Bax resulted in a greater caspase-3 activation compared to its absence. However, UV-induced activation of JNK1 and p38 was not affected by the caspase-1 and -3 inhibitors in U937 cells, so that caspases-1 and -3 do not function upstream of JNK1 and p38.  相似文献   

18.
We isolated a novel apoptosis-inducing component, tryptophol, from vinegar produced from boiled extract of black soybean (black soybean vinegar). Compound-6 purified from an ethyl acetate extract of black soybean vinegar using high performance liquid chromatography (HPLC) induced fragmentation of DNA and the development of apoptotic bodies (characteristic physiological features of apoptosis) in U937 cells. By analysis of chemical structure, this active compound was identified as tryptophol. Tryptophol induced apoptosis involving caspase-8 and -3 activation, followed by cleavage of poly (ADP-ribose) polymerase (PARP), as shown by measurement of enzyme activity and immunoblot analysis. The cell viability of normal lymphocytes separated from human blood was less affected by tryptophol, and fragmentation of DNA was not induced in normal lymphocytes. These results indicate that tryptophol isolated from black soybean vinegar inhibited the proliferation of U937 cells by inducing apoptosis via a pathway involving caspase-8 followed by caspase-3, without affecting normal lymphocytes.  相似文献   

19.
Lui JC  Kong SK 《FEBS letters》2006,580(8):1965-1970
The involvement of caspase-3 and its failure in the induction of DNA fragmentation during erythropoiesis were investigated with TF-1 cells. During erythroid differentiation, caspase-3 activation and cleavage of caspase-3 substrates such as ICAD (inhibitor of caspase-activated DNase) were detected without concomitant phosphatidyl-serine (PS) externalization and DNA fragmentation. These observations are in contrast to our understanding that DNA is degraded by CAD (caspase-activated DNase) when ICAD is cleaved by caspase-3. Our study demonstrates that CAD is downregulated at the mRNA and protein level during the erythroid differentiation in TF-1 cells. This provides a mechanism for the first time how cells avoid DNA fragmentation with activated caspase-3.  相似文献   

20.
To assess the lethal doses of gamma radiation and corresponding apoptotic response in new established human melanoma cell lines we exposed exponentially growing cultures to 8-100 Gy gamma radiation. The apoptosis and cell survival were determined by trypan blue exclusion, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction, agarose gel electrophoresis, colony forming assay, and long-term survival assay. The maximal DNA fragmentation 3 days after irradiation was observed in cultures irradiated with 20 Gy (36.9% TUNEL positive cells). The cultures irradiated with 50 and 100 Gy contained 18.7% and 16.4% TUNEL positive cells, respectively. Cultures exposed to 8 and 20 Gy gamma radiation recovered by week 3-4. Lethally irradiated (50 and 100 Gy) cultures which contained less apoptotic cells by day 3 died by week 5. A detectable increase in melanoma cell pigmentation after irradiation was also observed. The survival of human melanoma cell cultures after exposure to gamma radiation does not correlate with the level of apoptotic cells by day 3. At high radiation doses (> 50 Gy) when the radiation induced cell pigmentation is not inhibited the processes of apoptotic DNA fragmentation might be preferentially inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号