首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of the Escherichia coli 50S ribosomal subunit with histidine-specific diethyl pyrocarbonate affects peptide bond formation and release-factor-dependent peptidyl-tRNA hydrolysis. Unmodified L16 can restore activity to a split protein fraction from the altered subunit but other proteins of the core also contain histidine residues important for the activity of the peptidyltransferase centre. When isolated and purified by centrifugation, particles reconstituted with unmodified proteins and modified L16 do not retain the altered L16. The modified protein does mediate the partial restoration of peptide bond formation and release-factor-2 activities to these particles. It must be exerting its effect during the assembly of the peptidyltransferase centre in the reconstituted particle. A particle could be reconstituted which lacks L16 and has significant activity in peptide bond formation and peptidyl-tRNA hydrolysis. L16 stimulates these activities. A tighter ribosomal binding of the release factor 2, dependent upon the absence of protein L11, can in part compensate for the loss of activity of the peptidyltransferase centre when it is assembled with either modified L16 or in the absence of L16. The protein and its histidine residue seem important, therefore, for the peptidyltransferase centre to be formed in the correct conformation but not essential for activity once the centre is assembled.  相似文献   

2.
A monoclonal antibody specific for Escherichia coli ribosomal protein L16 was prepared to test its effects on ribosome function and to locate L16 by immunoelectron microscopy. The antibody recognized L16 in 50 S subunits, but not in 70 S ribosomes. It inhibited association of ribosomal subunits at 10 mM Mg2+, but not at 15 mM Mg2+. Poly(U)-directed polyphenylalanine synthesis and peptidyltransferase activities were completely inhibited when the L16 antibody was bound to 50 S subunits at a molar ratio of 1. There was no inhibitory effect on the binding of elongation factors or on the associated GTPase activities. Fab fragments of the antibody gave the same result as the intact antibody. Chemical modification of the single histidine (His13) by diethyl pyrocarbonate destroyed antibody binding. Electron microscopy of negatively stained antibody subunit complexes showed antibody binding beside the central protuberance of the 50 S particle on the side away from the L7/L12 stalk and on or near the interface between the two subunits. This site of antibody binding is fully consistent with its biochemical effects that indicate that protein L16 is essential for the peptidyltransferase activity activity of protein biosynthesis and is at or near the subunit interface.  相似文献   

3.
S R Fahnestock 《Biochemistry》1975,14(24):5321-5327
The functional role of the Bacillus stearothermophilus 50S ribosomal protein B-L3 (probably homologous to the Escherichia coli protein L2) was examined by chemical modification. The complex [B-L3-23S RNA] was photooxidized in the presence of rose bengal and the modified protein incorporated by reconstitution into 50S ribosomal subunits containing all other unmodified components. Particles containing photooxidized B-L3 are defective in several functional assays, including (1) poly(U)-directed poly(Phe) synthesis, (2) peptidyltransferase activity, (3) ability to associate with a [30S-poly(U)-Phe-tRNA] complex, and (4) binding of elongation factor G and GTP. The rates of loss of the partial functional activities during photooxidation of B-L3 indicate that at least two independent inactivating events are occurring, a faster one, involving oxidation of one or more histidine residues, affecting peptidyltransferase and subunit association activities and a slower one affecting EF-G binding. Therefore the protein B-L3 has one or more histidine residues which are essential for peptidyltransferase and subunit association, and another residue which is essential for EF-G-GTP binding. B-L3 may be the ribosomal peptidyltransferase protein, or a part of the active site, and may contribute functional groups to the other active sites as well.  相似文献   

4.
Ribosomal protein L2 is a core element of the large subunit that is highly conserved among all three kingdoms. L2 contacts almost every domain of the large subunit rRNA and participates in an intersubunit bridge with the small subunit rRNA. It contains a solvent-accessible globular domain that interfaces with the solvent accessible side of the large subunit that is linked through a bridge to an extension domain that approaches the peptidyltransferase center. Here, screening of randomly generated library of yeast RPL2A alleles identified three translationally defective mutants, which could be grouped into two classes. The V48D and L125Q mutants map to the globular domain. They strongly affect ribosomal A-site associated functions, peptidyltransferase activity and subunit joining. H215Y, located at the tip of the extended domain interacts with Helix 93. This mutant specifically affects peptidyl-tRNA binding and peptidyltransferase activity. Both classes affect rRNA structure far away from the protein in the A-site of the peptidyltransferase center. These findings suggest that defective interactions with Helix 55 and with the Helix 65-66 structure may indicate a certain degree of flexibility in L2 in the neck region between the two other domains, and that this might help to coordinate tRNA-ribosome interactions.  相似文献   

5.
Ethoxyformic anhydride abolishes the peptidyl transferase activity of 50-S ribosomal subunits, LiC1 split proteins and L16. Hydroxylamine treatment results in reactivation. Erythromycin exhibits significant protection with 50-S ribosomal subunits. With LiC1 split proteins and L16 significant protection was exhibited only after reconstitution. The results indicate that the ethoxyformic anhydride is reacting with approximately six histidines in LiC1 split proteins and one in L16. Since L16 has been reported to contain a single histidine, the results presented indicate the involvement of this histidine in peptidyl transferase activity.  相似文献   

6.
A new approach is described to gain further information concerning the ribosomal components involved in the peptidyltransferase (PTF) activity exerted by Escherichia coli 50S subunits. A particle is reconstituted from highly purified proteins and RNA under modified incubation conditions. This particle contains only 16 out of the 34 distinct components constituting the native subunit, and yet still exhibits significant PTF activity. Single omission tests at the level of this "minimal ribosomal particle" indicate the limits set on a further reduction of the components, and in particular reveal that protein L18 can be excluded from the set of proteins which are essential for PTF activity, thus leaving L2, L3, L4, L15, and L16 as primary candidates for this function. 5S RNA is not needed for PTF activity of the "minimal ribosomal particle". Furthermore, a buffer condition is described which drastically improves the stability of total protein preparations and facilitates the isolation of individual proteins.  相似文献   

7.
Ribosomes from a clinical isolate of E coli were purified and characterized. The structural features of these ribosomes were identical to wild-type E coli ribosomes, with the exception that rRNA in general, but especially 23S rRNA, was degraded as a result of the transition from early to late logarithmic growth phase, on different growth media. Analysis of the ribosomal protein by gel electrophoresis indicated that the L12/L7 molar ratio increases during early logarithmic phase, reaching a maximum value of about 1.6 at midlogarithmic phase, and then falling to 0.7 in late logarithmic phase. Concomitantly with L12/L7 alterations, the activity status of ribosomal peptidyltransferase was found to undergo a striking shift. Reconstitution experiments demonstrated that the two effects are closely related. Moreover, L12/L7 molar ratio as well as peptidyltransferase activity increased with increasing growth rate. In the latter case, however, the acetylation level of L12 protein per se seemed to be inadequate to modulate the peptidyltransferase activity.  相似文献   

8.
Ribosomal protein L16 was digested with Staphylococcus aureus protease V8 and the resulting peptides were separated by reversed-phase high-performance liquid chromatography. One of the fragments, identified by sequence analysis as the N-terminal peptide of L16, was shown to exhibit partial peptide-bond-formation and transesterification activities of peptidyltransferase upon reconstitution with L16-depleted 50S core particles. However, several proteins enhanced these activities. L15 increased both reactions when added to the reconstitution mixture, suggesting a limited capacity of the L16 peptide to incorporate into 50S core particles. In contrast, the interaction of L11 with the N-terminal peptide stimulated the transesterification reaction but not the peptide-bond-forming activity of ribosomes, indicating a different topological domain for these reactions. Also, EF-P, a soluble protein which reconstructs the peptide-bond formation and transesterification reactions on 70S ribosomes, stimulated both peptidyltransferase activities exhibited by the L16 N-terminal peptide.  相似文献   

9.
L16 exhibits both peptide bond and transesterification activities when reconstituted into 2 M LiCl core particles. L6 and L11, when reconstituted in a similar manner in the absence of L16, manifest significant transesterification activity. Both L6 and L11 enhance the transesterification activity of L16; L11 being more active than L6 in this respect. However, both L6 and L11 have minimal effect on peptide bond formation when reconstituted with L16 at concentrations more than 2.5 M equivalents. Both L6 and L11 exhibit a differential effect on transesterification. The affinity-labelling agents, like PhCH2SO2F, diisopropylfluorophosphate and ethoxyformic anhydride, have been used to explore the role of residues in peptide bond formation and transesterification. It is proposed that the Ser-Phe combination present in L16, L11 and L6 is involved in transesterification in addition to the single histidine in L16. The single histidine in L16 appears to be important in the catalysis of peptide bond formation and transesterification.  相似文献   

10.
The major function of the ribosome is its ability to catalyze formation of peptide bonds, and it is carried out by the ribosomal peptidyltransferase. Recent evidence suggests that the catalyst of peptide bond formation is the 23S rRNA of the large ribosomal subunit. We have developed an in vitro system for the determination of peptidyltransferase activity in yeast ribosomes. Using this system, a kinetic analysis of a model reaction for peptidyltransferase is described with Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The Ac-Phe-tRNA-poly(U)-80S ribosome complex (complex C) was isolated and then reacted with excess puromycin to give Ac-Phe-puromycin. This reaction (puromycin reaction) followed first-order kinetics. At saturating concentrations of puromycin, the first-order rate constant (k(3)) is identical to the catalytic rate constant (k(cat)) of peptidyltransferase. This k(cat) from wild-type yeast strains was equal to 2.18 min(-1) at 30 degrees C. We now present for the first time kinetic evidence that yeast ribosomes lacking a particular protein of the 60S subunit may possess significantly altered peptide bond-forming ability. The k(cat) of peptidyltransferase from mutants lacking ribosomal protein L24 was decreased 3-fold to 0.69 min(-1), whereas the k(cat) from mutants lacking L39 was slightly increased to 3.05 min(-1) and that from mutants lacking both proteins was 1.07 min(-1). These results suggest that the presence of ribosomal proteins L24 and, to a lesser extent, L39 is required for exhibition of the normal catalytic activity of the ribosome. Finally, the L24 or L39 mutants did not affect the rate or the extent of the translocation phase of protein synthesis. However, the absence of L24 caused increased resistance to cycloheximide, a translocation inhibitor. Translocation of Ac-Phe-tRNA from the A- to P-site was inhibited by 50% at 1.4 microM cycloheximide for the L24 mutant compared to 0.7 microM for the wild type.  相似文献   

11.
Increased efficiencies of programmed -1 ribosomal frameshifting in yeast cells expressing mutant forms of ribosomal protein L3 are unable to maintain the dsRNA "Killer" virus. Here we demonstrate that changes in frameshifting and virus maintenance in these mutants correlates with decreased peptidyltransferase activities. The mutants did not affect Ty1-directed programmed +1 ribosomal frameshifting or nonsense-mediated mRNA decay. Independent experiments demonstrate similar programmed -1 ribosomal frameshifting specific defects in cells lacking ribosomal protein L41, which has previously been shown to result in peptidyltransferase defects in yeast. These findings are consistent with the hypothesis that decreased peptidyltransferase activity should result in longer ribosome pause times after the accommodation step of the elongation cycle, allowing more time for ribosomal slippage at programmed -1 ribosomal frameshift signals.  相似文献   

12.
When 50 S subunits from Escherichia coli ribosomes were incubated with 1·3 m-LiC1 the resulting 1·3c core was inactive both with respect to peptidyltransferase activity and erythromycin binding (tested by equilibrium dialysis). Reconstitution experiments with purified proteins from the corresponding split fraction SP1·3 revealed that only L16 (reconstituted with the 1·3c core in a tenfold excess) could restore high activity in both systems.When 30 out of the 34 isolated ribosomal proteins were tested directly for binding or erythromycin, L15 was able to bind the drug, in contrast to all other proteins including L16. Total reconstitution experiments with the 50 S subunit demonstrated an absolute requirement for L15 and L16 with respect to both drug binding and peptidyltransferase activity.  相似文献   

13.
Studies on the catalytic rate constant of ribosomal peptidyltransferase   总被引:3,自引:0,他引:3  
A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.  相似文献   

14.
Protein L4 from Thermus thermophilus (TthL4) was heterologously overproduced in Escherichia coli cells. To study the implication of the extended loop of TthL4 in the exit-tunnel and peptidyltransferase functions, the highly conserved E56 was replaced by D or Q, while the semiconserved G55 was changed to E or S. Moreover, the sequence -G55E56- was inverted to -E55G56-. When we incorporated these mutants into E. coli ribosomes and investigated their impact on poly(Phe) synthesis, high variations in the synthetic activity and response to erythromycin of the resulting ribosomes were observed. In the absence of erythromycin, ribosomes harboring mutations G55E and E56D in TthL4 protein were characterized by low activity in synthesizing poly(Phe) and decreased capability in binding tRNA at the A site. On the other hand, ribosomes possessing mutations G55E, G55S, G55E-E56G, or E56Q in TthL4 protein were unexpectedly more sensitive to erythromycin. Evidence in support of these findings was drawn by in vivo experiments, assessing the erythromycin sensitivity of E. coli cells expressing wild-type or mutant TthL4 proteins. Our results emphasize the role of the extended loop of L4 ribosomal protein in the exit-tunnel and peptidyltransferase center functions.  相似文献   

15.
The ternary Ac-[3H]Phe-tRNA-poly(U)-ribosome complex (complex C) [D. L. Kalpaxis, D.A. Theocharis, and C. Coutsogeorgopoulos (1986) Eur. J. Biochem. 154, 267-271] was used in model experiments aiming at the purification of this complex via adsorption on cellulose nitrate membranes and then desorbing the complex back into solution. The desorption was carried out at pH 7.2 in the presence of the nonionic detergent Zwittergent (ZW). The activity status of complex C was assessed with the aid of the puromycin reaction which characterizes ribosomal peptidyltransferase as part of complex C. The optimal conditions for desorbing complex C were 5 degrees C and a buffered solution containing 0.1% ZW. The kinetic constants of peptidyltransferase in the adsorbed state were kcat = 2.0 min-1, Ks = 0.4 mM. In the desorbed state, in solution, kcat = 3.4 min-1 and Ks = 0.3 mM. The method promises to be suitable for the rapid purification of ribosomal complexes containing mRNA and aminoacyl-tRNA.  相似文献   

16.
The capacity of some Escherichia coli (E. coli) ribosomal proteins to bind to tRNA and to hydrolyse their aminoacylated derivatives has been analysed. The following results were obtained: (1) The basic proteins L2, L16 and L33 and S20 bound f[3H]Met-tRNA to a similar extent as the total proteins from 30 S (TP30) or 50 S (TP50) when tested by nitrocellulose filtration, in contrast to the more acidic proteins L7/L12 and S8. (2) The proteins of the peptidyltransferase centre, L2 and L16, showed no distinct specificity, binding various charged tRNAs from E. coli and Saccharomyces cerevisiae (S. cerevisiae). (3) A number of isolated ribosomal proteins hydrolysed aminoacyl-tRNA as assessed by trichloroacetic acid precipitation, in contrast to the TP30 and TP50. (4) The loss of radiolabel from Ac[14C]Phe-tRNA and from [14C]tRNA in the presence of these proteins could not be prevented by RNasin, a ribonuclease inhibitor, whereas that mediated by a sample of non-RNase-free bovine serum albumin was inhibited. (5) When double-labelled, Ac[3H]Phe-[14C]tRNA was incubated with L2 both radiolabels were lost, indicating that this potential candidate for a peptidyltransferase enzyme does not specifically cleave the ester bond between the aminoacyl residue and the tRNA.  相似文献   

17.
18.
J Egebjerg  R A Garrett 《Biochimie》1991,73(7-8):1145-1149
The binding sites of the antibiotics pactamycin and celesticetin on the rRNAs of Escherichia coli ribosomes were investigated by a chemical footprinting procedure. Pactamycin protected residues G-693 and C-795 in 16S RNA which are located in an important functional region of the 30S subunit participating in initiation complex formation and ribosomal subunit interaction. Celesticetin altered the reactivities of 5 residues A-2058, A-2059, A-2062, A-2451 and G-2505 within the central loop of domain V of 23S RNA which has been implicated in peptidyltransferase activity. Inferences are drawn concerning the mode of action of the antibiotics.  相似文献   

19.
Stimulation of peptidyltransferase reactions by a soluble protein   总被引:1,自引:0,他引:1  
The requirements for peptide-bond synthesis and transesterification reactions of Escherichia coli 70S ribosomes, 50S native or reconstructed 50S subunits were examined using fMet-tRNA as donor substrate and puromycin or alpha-hydroxypuromycin as acceptors. We report that the soluble protein EF-P, purified to apparent homogeneity, stimulates the synthesis of N-formylmethionylpuromycin or N-formylmethionylhydroxypuromycin by 70S ribosomes or reassociated 30S and 50S subunits. In the presence of EF-P, 70S ribosomes are significantly more efficient than 50S particles in catalysing either peptide-bond synthesis or transesterification. The involvement of 50S subunit proteins in EF-P-stimulated peptide-bond formation and transesterification was studied. 50S subunits were dissociated by 2.0 M LiCl into core particles and 'split' proteins, several of which were purified to homogeneity. When added to 30S X A-U-G X f[35S]Met-tRNA, 50S cores or 50S cores reconstituted with L6 or L11 promoted peptide-bond synthesis or transesterification poorly. EF-P stimulated peptide-bond synthesis by both these types of core particles to approximately the same extent. On the other hand, EF-P stimulated a low level of transesterification by cores reconstituted with L6 and L11. In contrast, core particles reconstituted with L16 exhibited both peptide-bond-forming and transesterification activities and EF-P stimulated both reactions twentyfold and fortyfold respectively. Thus different proteins differentially stimulate the intrinsic or EF-P-stimulated peptide-bond and transesterification reactions of the peptidyl transferase. Ethoxyformylation of either 50S subunits or purified L16 used to reconstitute core particles, resulted in loss of peptide-bond formation and transesterification. Similarly ethoxyformylation of EF-P resulted in a 25-50% loss of its ability to stimulate both reactions. 30S subunits were resistant to treatment by this reagent. These results suggest the involvement of histidine residues in peptidyltransferase activities. The role of EF-P in the catalytic mechanism of peptidyltransferase is discussed.  相似文献   

20.
Summary Antibodies to individual chloroplast ribosomal (r-)proteins ofChlamydomonas reinhardtii synthesized in either the chloroplast or the cytoplasm were used to examine the relatedness ofChlamydomonas r-proteins to r-proteins from the spinach (Spinacia oleracea) chloroplast,Escherichia coli, and the cyanobacteriumAnabaena 7120. In addition,35S-labeled chloroplast r-proteins from large and small subunits ofC. reinhardtii were coelectrophoresed on 2-D gels with unlabeled r-proteins from similar subunits of spinach chloroplasts,E. coli, andAnabaena to compare their size and net charge. Comigrating protein pairs were not always immunologically related, whereas immunologically related r-protein pairs often did not comigrate but differed only slightly in charge and molecular weight. In constrast, when35S-labeled chloroplast r-proteins from large and small subunits of a closely related speciesC. smithii were coelectrophoresed with unlabeledC. reinhardtii chloroplast r-proteins, only one pair of proteins from each subunit showed a net displacement in mobility.Analysis of immunoblots of one-dimensional SDS and two-dimensional urea/SDS gels of large and small subunit r-proteins from these species revealed more antigenic conservation among the four species of large subunit r-proteins than small subunit r-proteins.Anabaena r-proteins showed the greatest immunological similarity toC. reinhardtii chloroplast r-proteins. In general, antisera made against chloroplast-synthesized r-proteins inC. reinhardtii showed much higher levels of cross-reactivity with r-proteins fromAnabaena, spinach, andE. coli than did antisera to cytoplasmically synthesized r-proteins. All spinach r-proteins that cross-reacted with antisera to chloroplast-synthesized r-proteins ofC. reinhardtii are known to be made in the chloroplast (Dorne et al. 1984b). FourE. coli r-proteins encoded by the S10 operon (L2, S3, L16, and L23) were found to be conserved immunologically among the four species. Two of the large subunit r-proteins, L2 and L16, are essential for peptidyltransferase activity. The third (L23) and two otherE. coli large subunit r-proteins (L5 and L27) that have immunological equivalents among the four species are functionally related to but not essential for peptidyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号