首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The electrophysiological characteristics of the unicellular green alga Micrasterias torreyi Bail. are studied here for the first time using microelectrode techniques. The resting potential of the plasma membrane varied between –39.5 and –42.2 mV for different developmental stages of the dividing cell and was –41.7 mV ( se = 3.2, n = 9) in the interphase cells. The resting potential of the chloroplast envelope was lower, –53.9 mV ( se = 3.6, n = 15). Supraoptimal K+ (20 m M ) had no clear effects on the plasma membrane but caused a depolarization of 10 mV in the chloroplast. Additional external Ca2+ (10 m M ) depolarized the membrane potential quite strongly (by 23 mV). Low external pH did not affect the resting potential of the cell. There is a marked difference in the resting potential values between non-vacuolated cells (about –40 mV), to which Micrasterias belongs, and vacuolated plant cells (–100 to –250 mV). This indicates the participation of the tonoplast in the transport of ions and charged molecules in vacuolated cells. Na+ and Cl, which play an important role in ion metabolism in most plant cells, are not needed by Micrasterias .  相似文献   

2.
Harada A  Okazaki Y  Takagi S 《Planta》2002,214(6):863-869
In mesophyll cells of the aquatic angiosperm Vallisneria gigantea Graebner, red, blue, or blue plus far-red light induced a typical membrane hyperpolarization, whereas far-red light alone had little effect. Both N,N'-dicyclohexylcarbodiimide, a potent inhibitor of H+-ATPase, and carbonylcyanide m-chlorophenylhydrazone, an uncoupler, produced a considerable membrane depolarization in the dark-adapted cells and a complete suppression of the light-induced hyperpolarization. Although 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport, did not affect the membrane potential in darkness, it completely inhibited the light-induced membrane hyperpolarization. In vivo illumination of the leaves with red light caused a substantial decrease in the Km for ATP, not only of the vanadate-sensitive ATP-hydrolyzing activity in leaf homogenate, but also of the ATP-dependent H+-transporting activity in plasma membrane (PM) vesicles isolated from the leaves by aqueous polymer two-phase partitioning methods. The effects of red light were negated by the presence of DCMU during illumination. In vivo illumination with far-red light had no effect on the Km for ATP of H+-transporting activity. These results strongly suggest that an electrogenic component in the membrane potential of the mesophyll cell is generated by the PM H+-ATPase, and that photosynthesis-dependent modulation of the enzymatic activity of the PM H+-ATPase is involved in the light-induced membrane hyperpolarization.  相似文献   

3.
The concentration and absorption of methylphenazinium cations (MP+) in suspensions of pea chloroplasts are simultaneously lowered during rapid (approximately 10s) illumination. The light-induced changes of absorption and concentration of MP+ reveal similar sensitivity towards some inhibitors and uncouplers and are determined by MP+ uptake by the thylakoids. The time-course of light-induced MP+ uptake was found to be modified in the presence of dithioerythritol, Mg2+ and ATP, i. e. under conditions which induce the ATPase activity and ATP hydrolysis in chloroplasts. The kinetic curve of light-induced MP+ uptake under these conditions consists of a relatively fast (approximatley 10 s) and a slow (approximately 10 min) components. The slow ATP-dependent component of MP+ uptake is enhanced by low concentrations of gramicidin and is completely inhibited by the energy transfer inhibitor--dicyclohexylcarbodiimide. The data obtained suggest that the light-induced energization of the chloroplast membrane is accompanied by the transport of MP+ into the thylakoids against the electrical potential and concentration gradients.  相似文献   

4.
Guard cells are electrically isolated from other plant cells and therefore offer the unique possibility to conduct current- and voltage-clamp recordings on single cells in an intact plant. Guard cells in their natural environment were impaled with double-barreled electrodes and found to exhibit three physiological states. A minority of cells were classified as far-depolarized cells. These cells exhibited positive membrane potentials and were dominated by the activity of voltage-dependent anion channels. All other cells displayed both outward and inward rectifying K+-channel activity. These cells were either depolarized or hyperpolarized, with average membrane potentials of -41 mV (SD 16) and -112 mV (SD 19), respectively. Depolarized guard cells extrude K+ through outward rectifying channels, while K+ is taken up via inward rectifying channels in hyperpolarized cells. Upon a light/dark transition, guard cells that were hyperpolarized in the light switched to the depolarized state. The depolarization was accompanied by a 35 pA decrease in pump current and an increase in the conductance of inward rectifying channels. Both an increase in pump current and a decrease in the conductance of the inward rectifier were triggered by blue light, while red light was ineffective. From these studies we conclude that light modulates plasma membrane transport through large membrane potential changes, reversing the K+-efflux via outward rectifying channels to a K+-influx via inward rectifying channels.  相似文献   

5.
Alan J. Bearden  Richard Malkin 《BBA》1973,325(2):266-274
The light-induced free-radical signal of Photosystem II (observed after illumination at 77 °K) has been studied in chloroplasts as a function of the oxidation-reduction potential established prior to freezing. The intensity of the light-induced signal is unchanged in the potential region of +590 mV to +760 mV. At higher potential (+850 mV), there is a 30% decrease in signal intensity. The light-induced signal decreases to zero in the low-potential region, with a midpoint potential of +475 mV. These results are considered in terms of a Photosystem II reaction-center complex in which the light-induced free-radical signal arises from the oxidized form of the reaction-center chlorophyll, and this chlorophyll molecule is capable of being reduced at liquid-nitrogen temperature by a secondary electron donor which has a midpoint oxidation-reduction potential of +475 mV.  相似文献   

6.
R Renthal  J K Lanyi 《Biochemistry》1976,15(10):2136-2143
Illumination of envelope vesicles prepared from Halobacterium halobium cells causes translocation of protons from inside to outside, due to the light-induced cycling of bacteriorhodopsin. This process results in a pH gradient across the membranes, an electrical potential, and the movements of K+ and Na+. The electrical potential was estimated by following the fluorescence of a cyanine dye, 3,3'-dipentyloxadicarbocyanine. Illumination of H. halobium vesicles resulted in a rapid, reversible decrease of the dye fluorescence, by as much as 35%. This effect was not seen in nonvesicular patches of purple membrane. Observation of maximal fluorescence decreases upon ilumination of vesicles required an optimal dye/membrane protein ratio. The pH optimum for the lightinduced fluorescence decrease was 6.0. The decrease was linear with actinic light intensity up to about 4 X 10(5) ergs cn-2 s-1. Valinomycin, gramicidin, and triphenylmethylphosphonium ion all abolished the fluorescence changes. However, the light-induced pH change was enhanced by these agents. Conversely, buffered vesicles showed no pH change but gave the same or larger fluorescence changes. Thus, we have identified the fluorescence decrease with a light-induced membrane potential, inside negative. By using valinomycin-K+-induced membrane potentials, we calibrated the fluorescence decrease with calculated Nernst diffusion potentials. We found a linear dependence between potential and fluorescence decrease of 3 mV/%, up to 90 mV. When the envelope vesicles were illuminated, the total proton-motive force generated was dependent on the presence of Na+ and K+ and their concentration gradients across the membrane. In general, K+ appeared to be more permeable than Na+ and, thus, permitted development of greater pH gradients and lower electrical potentials. By calculating the total proton-motive force from the sum of the pH and potential terms, we found that the vesicles can produce proton-motive forces near--200 mV.  相似文献   

7.
《遗传学报》2022,49(8):715-725
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.  相似文献   

8.
The membrane potential of intact bacteria was monitored by measuring the tetraphenylphosphonium ion distribution across the membrane using poly--(vinyl chloride) matrix-type electrode selective to tetraphenylphosphonimum ion. It was found that the tetraphenylphosphonium ion was not countertransported against H+ movement. The membrane potential of Bacillus subtilis was estimated to be 80-120 mV inside-negative at external pH 7. The effect of the external pH on the membrane potential was studied. It varied from 30 to 40 mV/decade change in the external [H+] in the pH region of greater than 6.5, increasing pH making it more inside-negative. The addition of carbonyl cyanide m-chlorophenylhydrazone depolarized the membrane, and the membrane potential approached the H+ equilibrium potential. The addition of N,N'-dicyclohexylcarbodiimide did not abolish the pH dependence of the membrane potential. Increasing the external [K+] did not affect the pH dependence. CN- partially depolarized the membrane. A parallel conductance model for membrane potential could explain the results qualitatively.  相似文献   

9.
Ionizable groups and conductances of the rod photoreceptor membrane   总被引:1,自引:0,他引:1       下载免费PDF全文
The ionizable groups and conductances of the rod plasma membrane were studied by measuring membrane potential and input impedance with micropipettes that were placed in the rod outer segments. Reduction of the pH from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark (by 2- 3 mV) and an increased size of the light response (also by 2-3 mV). The dark depolarization was accompanied by and increased resting input impedance (by 11-35 Mω). When the pH was decreased in a perfusate in which Cl(-) was replaced by isethionate, the membrane depolarized. When the pH was decreased in a perfusate in which Na(+) was replaced by choline, an increase of input impedance was observed (11-50 Mω) even though a depolarization did not occur. These results are consistent with the interpretation that the effects of decreased extracellular pH result mainly from a decrease in rod membrane K(+) conductance that is presumably cause by protonation of ionizable groups having a pK(a) between 7.3 and 7.8. Furthermore, from these results and results obtained by using CO(2) and NH(3) to affect specifically the internal pH of the cell, it seems unlikely that altered cytoplasmic [H(+)] is a cytoplasmic messenger for excitation of the rod. When the rods were exposed to perfusate in which Na(+) was replaced by choline, the resting (dark) input impedance increased (by 26 Mω +/- 5 Mω SE), and the light-induced changes in input impedance became undetectable. Replacement of Cl(-) by isethionate had no detectable effect on either the resting input impedance or the light-induced changes in input impedance. These results confirm previous findings that the primary effect of light is to decrease the membrane conductance to Na(+) and show that, if any other changes in conductance occur, they depend upon the change in Na(+) conductance. The results are consistent with the following relative resting conductances of the rod membrane: G(Na(+)) similar to G(K(+)) more than 2-5 G(Cl(-)).  相似文献   

10.
The effects of dicyclohexylcarbodiimide, a potent inhibitor of chloroplast ATPase, on the light-induced electric potential changes in intact chloroplasts of Peperomia metallica and of a hornwort Anthoceros sp. were investigated by means of glass microcapillary electrodes. The characteristics of potential changes induced by flashes or continuous light in chloroplasts of both species are similar except for the phase of potential rise in continuous light, which is clearly biphasic in Anthoceros chloroplasts. Dicyclohexylcarbodiimide at concentration 5 · 10−5 M completely abolishes the transient potential undershoot in the light-off reaction but has little effect on the peak value of the photoelectric response. The membrane conductance in the light and in the dark was tested by measuring the decay kinetics of flash-generated potential in dark-adapted and preilluminated chloroplasts. In the absence of dicyclohexylcarbodiimide, preillumination causes a significant acceleration of the potential decay. The light-induced changes in the decay kinetics of flash-induced responses were abolished in the presence of dicyclohexylcarbodiimide, whereas the rate of potential decay in dark-adapted chloroplasts was not altered by dicyclohexylcarbodiimide. The results are consistent with the notion that dicyclohexylcarbodiimide diminishes H+ conductance of energized thylakoid membranes by interacting with the H+ channel of ATPase. The occurrence of a lag (approx. 300 ms) on the plot of potential undershoot (diffusion potential) versus illumination time might suggest the increase in H+ permeability coefficient of thylakoid membrane during illumination.  相似文献   

11.
The membrane potentials of bone cells derived from calvaria of new born rats was shown to be strongly dependent on temperature. When we lowered the temperature from 36 degrees C to 26 degrees C, cells with spontaneous resting membrane potentials (MP) of -80 to -50 mV depolarized (mean amplitude 8 mV; n = 33), and the membrane resistance increased by approximately 80% (n = 20). The temperature response depended on the actual MP, the reversal potential being in the range of -80 to -90 mV. With the application of ouabain (0.1-1 mmol/liter; n = 12), cells depolarized. Simultaneously, the reversal potential of the temperature response was shifted towards more positive values and approached the actual MP level of the cells. Consequently, the depolarization amplitudes induced by lowering temperature were reduced at spontaneous MP levels. The rise of the membrane resistance during cooling was unaffected. When the extracellular chloride concentration was reduced from 133 to 9 mmol/liter, temperature-dependent depolarizations persisted at spontaneous MP values (n = 5). The findings indicate that the marked effects of temperature changes on the MP of bone-derived cells are mainly determined by changes of the potassium conductance.  相似文献   

12.
The influence of oxytocin on the intracellular Na+ and K+ concentrations, the level of transmembrane potential differences, and on the relative ionic permeability (PNa/PK) of the apical zones of the superficial epithelium membrane was studied in experiments on the isolated frog gallbladder (GB). Oxytocine introduced into the outer incubation solution in a dose of 20 mulliunits/ml caused a reduction of transmembrane potential difference, and an increase of PNa/pk coefficient and an insignificant shift of the Na+ and K+ concentrations in the intracellular medium. Thirty minutes after the oxytocine action of the organ the membrane potential (MP) of the cells decreased from 52.7 mV to 38.7 mV (the cell is negatively charged inside), and PNa/PK increased from 0,083 (control) to 0,175 (test) with a simultaneous increase in the intracellular Na+ concentration by 18.3 milliequiv./kg of (H2O)i. Such a shift in the intracellular Na+ and K+ concentrations may cause a decrease of the MP by only--0.7 mV, but actually the membrane potential decreased by--14.0 mV. Thus, the reduction of the transmembrane potential difference results from increase of PNa/PK under the influence of oxytocine. No electrogenic ionic transport through the apical membrane of frog gallbladder epithelial cells was revealed.  相似文献   

13.
The fluorescent dye chlorotetracycline was used to study the relationship between the light-induced decrease in cytosolic free calcium concentration, [Ca2+]c, and its effect on ion transport at the plasma membrane in the giant cells of Chara corallina Klein ex Willd. A kinetic analysis of the simultaneously measured light-induced changes in membrane potential and in [Ca2+]c led to the same time constant of about 40 s. The reversal potential of the light effect on membrane potential was in agreement with the dominant role of a K+ channel in the plasma membrane. Thus, the experiments reported here provide evidence for the following light-driven signal transduction chain from the chloroplasts to K+ transport of the plasma membrane: (i) light causes an uptake of Ca2+ into the chloroplasts, (ii) this causes a decrease in cytosolic [Ca2+]c, (iii) this leads to a decrease in the activity of a K+ channel. The results also initiated a re-analysis of previously published data of the light effect on the velocity of cytosolic streaming and supported the hypothesis that Ca2+ fluxes coming out of the chloroplasts upon darkening cause a Ca2+-induced phosphorylation of myosin, which slows down cytoplasmic streaming. Received: 3 May 1997 / Accepted: 19 May 1998  相似文献   

14.
Physiological and biochemical studies have suggested that the plant plasma membrane H+-ATPase controls many important aspects of plant physiology, including growth, development, nutrient transport, and stomata movements. We have started the genetic analysis of this enzyme by isolating both genomic and cDNA clones of an H+-ATPase gene from Arabidopsis thaliana. The cloned gene is interrupted by 15 introns, and there is partial conservation of exon boundaries with respect to animal (Na+/K+)- and Ca2+-ATPases. In general, the relationship between exons and the predicted secondary and transmembrane structure of different ATPases with phosphorylated intermediate support a somewhat degenerate correspondence between exons and structural modules. The predicted amino acid sequence of the plant H+-ATPase is more closely related to fungal and protozoan H+-ATPases than to bacterial K+-ATPases or to animal (Na+/K+)-, (H+/K+)-, and Ca2+-ATPases. There is evidence for the existence of at least three isoforms of the plant H+-ATPase gene. These results open the way for a molecular approach to the structure and function of the plant proton pump.  相似文献   

15.
Plasma membrane wound repair is an important but poorly understood process. We used femtosecond pulses from a Ti-Sapphire laser to make multiphoton excitation-induced disruptions of the plasma membrane while monitoring the membrane potential and resistance. We observed two types of wounds that depolarized the plasma membrane. At threshold light levels, the membrane potential and resistance returned to prewound values within seconds; these wounds were not easily observed by light microscopy and resealed in the absence of extracellular Ca(2+). Higher light intensities create wounds that are easily visible by light microscopy and require extracellular Ca(2+) to reseal. Within a few seconds the membrane resistance is approximately 100-fold lower, while the membrane potential has depolarized from -80 to -30 mV and is now sensitive to the Cl(-) concentration but not to that of Na(+), K(+), or H(+). We suggest that the chloride sensitivity of the membrane potential, after wound resealing, is due to the fusion of chloride-permeable intracellular membranes with the plasma membrane.  相似文献   

16.
We have developed a new method to quantify the transmembrane electrochemical proton gradient present in chloroplasts of dark-adapted leaves. When a leaf is illuminated by a short pulse of intense light, we observed that the light-induced membrane potential changes, measured by the difference of absorption (520 nm-546 nm), reach a maximum value (approximately 190 mV) determined by ion leaks that occur above a threshold level of the electrochemical proton gradient. After the light-pulse, the decay of the membrane potential follows a multiphasic kinetics. A marked slowdown of the rate of membrane potential decay occurs approximately 100 ms after the light-pulse, which has been previously interpreted as reflecting the switch from an activated to an inactivated state of the ATP synthase (Junge, W., Rumberg, B. and Schr?der, H., Eur. J. Biochem. 14 (1970) 575-581). This transition occurs at approximately 110 mV, thereby providing a second reference level. On this basis, we have estimated the Delta micro (H(+)) level that pre-exists in the dark. Depending upon the physiological state of the leaf, this level varies from 40 to 70 mV. In the dark, the Delta micro (H(+)) collapses upon addition of inhibitors of the respiratory chain, thus showing that it results from the hydrolysis of ATP of mitochondrial origin. Illumination of the leaf for a period longer than several seconds induces a long-lived Delta micro (H(+)) increase (up to approximately 150 mV) that reflects the light-induced increase in ATP concentration. Following the illumination, Delta micro (H(+)) relaxes to its dark-adapted value according a multiphasic kinetics that is completed in more than 1 h. In mature leaf, the deactivation of the Benson-Calvin cycle follows similar kinetics as Delta micro (H(+)) decay, showing that its state of activation is mainly controlled by ATP concentration.  相似文献   

17.
In leaves of Elodea densa the membrane potential measured in light equals the equilibrium potential of H+ on the morphological upper plasma membrane. The apoplastic pH on the upper side of the leaf is as high as 10.5-11.0, which indicates that alkaline pH induces an increased H+ permeability of the plasmalemma. To study this hypothesis in more detail we investigated the changes in membrane potential and conductance in response to alterations in the external pH from 7 (= control) to 9 or 11 under both light and dark conditions. Departing from the control pH 7 condition, in light and in dark the application of pH 9 resulted in a depolarization of the membrane potential to the Nernst potential of H+. In the light but not in the dark, this depolarization was followed by a repolarization to about -160 mV. The change to pH 9 induced, in light as well as in dark, an increase in membrane conductance. The application of pH 11, which caused a momentary hyper- or depolarization depending on the value at the time pH 11 was applied, brought the membrane potential to around -160 mV. The membrane conductance also increased, in comparison to its value at pH 7, as a result of the application of pH 11, irrespective of the light conditions.  相似文献   

18.
Technical questions of macrophage (MP) membrane potential measuring with a probe bis(1,3-dibutyl barbiturate) trimethineoxonol (diBA-C4 (3)) have been elaborated. Measurements were made of single adherent cells. It was shown that at a high concentration of probe in the medium (900 nM) the fluorescent signal well traces the depolarization of membrane, whereas at a low concentration of probe (110 nM) the hyperpolarization is detected more effectively. To find out the reasons for this difference, measurements were made of dye distribution between the cell and the medium measured as well as of the kinetics of probe efflux from MP in the dye-free medium. The gradient of dye concentration on the cell-medium interface appeared to depend on the concentration of diBA-C4 (3) in the medium. Using gramicidin D and Na- and Cl-free solutions, the calibration of fluorescent signal was done; the value of K+ equilibrium potential of MP was -66 - -71 mV. The effect of quinidine and the binding of intracellular calcium result in a significant depolarization of MP membrane; a conclusion is made of the significant contribution of Ca(+)-dependent K(+)-channels to the maintenance of the MP resting potential.  相似文献   

19.
Protoplasts isolated from the apical segments of Cuscuta reflexa exhibited blue light-sensitive PM-linked NADH oxidase activity and increased rate of Ca2+-uptake in presence of NADH in dark, which was also stimulated by blue light. Contrary to marginal inhibition by Con A treatment, the ATPase inhibitors significantly inhibited the Ca2+ uptake by the protoplasts both in dark and under blue light. The Ca2+-calmodulin antagonists, W-7 and calmidazolium, also inhibited Ca2+-uptake by protoplasts under similar conditions. The state of PM polarization was monitored by the fluorescent dye 9-amino acridine. It was observed that PM-linked NADH oxidation caused hyperpolarization of the membrane, the exposure of which to blue light resulted in membrane depolarization. The presence of Ca2+-calmodulin antagonists or Con A treatment completely abolished the blue light-induced membrane depolarization. It is argued that these actities at the PM, having some glycoproteic components, are functionally closely involved in blue light-induced signal transduction in Cuscuta  相似文献   

20.
The relation of changes in internal, free Ca2+, measured with arsenazo III, to the membrane potential, measured with the cyanine dye di-S-C2(5) or 86Rb+ distribution ratio, was studied in isolated guinea pig cortical nerve endings. Depolarization of the plasma membrane with veratridine or gramicidin as well as addition of ionophore A23187 led to an increase in cytosolic Ca2+. Only the response to veratridine was inhibited by tetrodotoxin. The dependence of the depolarization-induced increase in intraterminal, free Ca2+ on the membrane potential between about -50 to 0 mV was sigmoidal. A maximal increase in cytosolic Ca2+ was reached when the membrane potential was depolarized from the resting level, about -64 mV, to about -40 mV. These results show that in isolated nerve endings the activation of voltage-sensitive Ca2+ channels concomitantly leads to an increase in cytosolic, free Ca2+. Comparison of the results of the present study with the previous electrophysiological observations indicate that Ca2+ channels in synaptosomes, presynaptic nerve terminals of the squid giant synapse and cardiac cells have essentially similar voltage dependency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号