首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure.  相似文献   

2.
β‐diversity (variation in community composition) is a fundamental component of biodiversity, with implications for macroecology, community ecology and conservation. However, its scaling properties are poorly understood. Here, we systematically assessed the spatial scaling of β‐diversity using 12 empirical large‐scale datasets including different taxonomic groups, by examining two conceptual types of β‐diversity and explicitly considering the turnover and nestedness components. We found highly consistent patterns across datasets. Multiple‐site β‐diversity (i.e. variation across multiple sites) scaling curves were remarkably consistent, with β‐diversity decreasing with sampled area according to a power law. For pairwise dissimilarities, the rates of increase of dissimilarity with geographic distance remained largely constant across scales, while grain size (or scale level) had a stronger effect on overall dissimilarity. In both analyses, turnover was the main contributor to β‐diversity, following total β‐diversity patterns closely, while the nestedness component was largely insensitive to scale changes. Our results highlight the importance of integrating both inter‐ and intraspecific aggregation patterns across spatial scales, which underpin substantial differences in community structure from local to regional scales.  相似文献   

3.
Biodiversity is structured by multiple mechanisms that are dependent, at least in part, on ecological similarities and differences among species. Integrating traits and phylogenies in diversity metrics may provide deeper insight into community assembly processes across spatial scales. However, different traits are influenced by processes at different spatial scales, and it is not clear how trait‐spatial scale mismatches skew our ability to detect assembly patterns. An additional complexity is how phylogenetic distances, which might capture unmeasured traits, reflect spatially dependent processes. Here we analyze a freshwater zooplankton dataset from 91 ponds and show that different traits are associated with processes at different spatial scales. We first assessed the response of individual traits to processes at both α‐ and β‐scales, and then quantified the power of different combinations of traits and phylogenetic distances to reveal environmental and spatial drivers of α‐ and β‐diversity. We found that explanatory power was maximised when we accounted for environmental and spatial drivers with single, but different traits for α‐ and β‐diversity. Using the most appropriate trait for each spatial scale outperformed phylogenetic information, but phylogenetic information outperformed the same traits when these were used at the wrong spatial scale, and all outperformed taxonomic analyses that ignore trait and phylogenetic information. We demonstrate that accounting for species’ similarities and differences provides important information about dominant assembly mechanisms at different spatial scales, and that phylogeny is especially useful when measured traits are uninformative at a given spatial scale or when there is lack of trait data. Our study also indicates, however, that trait‐scale mismatches among phylogenetically conserved traits may affect the performance of phylogenetic indices compared to indices that account only for the best single trait at each spatial scale.  相似文献   

4.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

5.
6.
We asked whether (a) variation in species composition of parasite assemblages on the same host species follows a non‐random pattern and (b) if so, manifestation of this non‐randomness across space and time differs among parasites, hosts and scales. We assessed nestedness and its contribution to β‐diversity of fleas and gamasid mite assemblages exploiting small mammals across three scales: (a) within the same region across different locations; (b) within the same location across different times and (c) across distinct geographic regions. We estimated (a) the degree of nestedness (NCOL) and (b) the proportional contribution of nestedness to the total amount of β‐diversity across locations, times and regions (βNESP). In the majority of host species, parasite assemblages were nested significantly across all three scales. In mites, but not fleas, NCOL correlated with the contribution of nestedness to the total amount of β‐diversity. In fleas, NCOL did not differ among assemblages at the two local scales, but was significantly lower at regional scale. In mites, NCOL was the highest in assemblages at local spatial scale. βNESP was significantly higher (a) in flea than in mite assemblages at both local scales and (b) in mite than in flea assemblages at regional scale. In fleas, βNESP was higher at both local scales, whereas in mites it was higher at both local temporal and regional scales. Sheltering habits and geographic range of a host species did not affect either NCOL or βNESP in flea assemblages, but both metrics significantly decreased with an increase of geographic range of a host species in mite assemblages. We conclude that flea and mite assemblages across host populations at smaller and larger spatial scales and at temporal scale were characterized by nestedness which, in turn, contributed to an important degree to the total amount of β‐diversity of these assemblages.  相似文献   

7.
Microbial diversity varies at multiple spatial scales, but little is known about how climate change may influence this variation. Here we assessed the free‐living bacterioplankton composition of thaw ponds over a north‐south gradient of permafrost degradation in the eastern Canadian subarctic. Three nested spatial scales were compared: 1) among ponds within individual valleys 2) between two valleys within each landscape type, and 3) between landscape types (southern sporadic versus northern discontinuous permafrost). As a reference point, we sampled rock‐basin lakes whose formation was not related to permafrost thawing. β‐diversity was low at the smallest scale despite marked differences in limnological properties among neighboring ponds. β‐diversity was high among valleys, associated with greater environmental heterogeneity. The largest differences were between landscape types and appeared to reflect the concomitant effects of environmental filtering and dispersal limitation. Raup–Crick β‐diversity indicated that community assembly was driven by both stochastic (random extinction, dispersal, ecological drift) and deterministic (environmental filtering) processes. Communities sampled in the most degraded valley appeared primarily assembled through stochastic processes, while environmental filtering played a greater role at the other valleys. These results imply that climate warming and ongoing permafrost degradation will influence microbial community assembly, which in turn is likely to affect the functioning of thaw pond ecosystems.  相似文献   

8.
Effects of host plant α‐ and β‐diversity often confound studies of herbivore β‐diversity, hindering our ability to predict the full impact of non‐native plants on herbivores. Here, while controlling host plant diversity, we examined variation in herbivore communities between native and non‐native plants, focusing on how plant relatedness and spatial scale alter the result. We found lower absolute magnitudes of β‐diversity among tree species and among sites on non‐natives in all comparisons. However, lower relative β‐diversity only occurred for immature herbivores on phylogenetically distinct non‐natives vs. natives. Locally in that comparison, non‐native gardens had lower host specificity; while among sites, the herbivores supported were a redundant subset of species on natives. Therefore, when phylogenetically distinct non‐natives replace native plants, the community of immature herbivores is likely to be homogenised across landscapes. Differences in communities on closely related non‐natives were subtler, but displayed community shifts and increased generalisation on non‐natives within certain feeding guilds.  相似文献   

9.

Aim

Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.

Location

Balbina Hydroelectric Dam, Central Brazilian Amazonia.

Methods

Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.

Results

β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.

Main conclusions

The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.
  相似文献   

10.
11.
Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β‐diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field‐derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β‐diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β‐diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.  相似文献   

12.
13.
Aim To test how far can macroecological hypotheses relating diversity to environmental factors be extrapolated to functional and phylogenetic diversities, i.e. to the extent to which functional traits and evolutionary backgrounds vary among species in a community or region. We use a spatial partitioning of diversity where regional or γ‐diversity is calculated by aggregating information on local communities, local or α‐diversity corresponds to diversity in one locality, and turnover or β‐diversity corresponds to the average turnover between localities and the region. Location France. Methods We used the Rao quadratic entropy decomposition of diversity to calculate local, regional and turnover diversity for each of three diversity facets (taxonomic, phylogenetic and functional) in breeding bird communities of France. Spatial autoregressive models and partial regression analyses were used to analyse the relationships between each diversity facet and environmental gradients (climate and land use). Results Changes in γ‐diversity are driven by changes in both α‐ and β‐diversity. Low levels of human impact generally favour all three facets of regional diversity and heterogeneous landscapes usually harbour higher β‐diversity in the three facets of diversity, although functional and phylogenetic turnover show some relationships in the opposite direction. Spatial and environmental factors explain a large percentage of the variation in the three diversity facets (>60%), and this is especially true for phylogenetic diversity. In all cases, spatial structure plays a preponderant role in explaining diversity gradients, suggesting an important role for dispersal limitations in structuring diversity at different spatial scales. Main conclusions Our results generally support the idea that hypotheses that have previously been applied to taxonomic diversity, both at local and regional scales, can be extended to phylogenetic and functional diversity. Specifically, changes in regional diversity are the result of changes in both local and turnover diversity, some environmental conditions such as human development have a great impact on diversity levels, and heterogeneous landscapes tend to have higher diversity levels. Interestingly, differences between diversity facets could potentially provide further insights into how large‐ and small‐scale ecological processes interact at the onset of macroecological patterns.  相似文献   

14.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

15.
Abstract. Patterns of β‐diversity in a highly diverse tropical dry forest tree community are described; the contribution of environmental heterogeneity and distance to β‐diversity was assessed. Significant differences in elevation, insolation, slope and soil water holding capacity (p < 0.01), variables related to water availability, were found among 830 m × 100 m transects laid along contrasting slopes of a system of three parallel microbasins. A gradient in elevation and insolation was found within north‐facing transects, among 10 m × 10 m sites; south‐facing transects showed an elevation gradient while crest transects showed a gradient in water holding capacity. In total 119 species were registered, with 27 to 64 species per transect, and 4 to 16 species per site. A large β‐diversity was found among and within transects; two indices of β‐diversity consistently showed a higher β‐diversity within transects than among them. Among transects, 64% of the variance in species composition could be attributed to the environmental variables; an additional 22% to the spatial distribution of sites. Within transects, 42% of the deviance in β‐diversity values was explained by insolation, and 19% by distance. β‐diversity increased with distance and with difference in insolation among sites; north‐facing transects, those with most contrasting insolation conditions, had the steepest increase in β‐diversity with distance. Such increase was clearly associated with changes in species composition, not with changes in species richness.  相似文献   

16.
17.
One major goal in microbial ecology is to establish the importance of deterministic and stochastic processes for community assembly. This is relevant to explain and predict how diversity changes at different temporal scales. However, understanding of the relative quantitative contribution of these processes and particularly of how they may change over time is limited. Here, we assessed the importance of deterministic and stochastic processes based on the analysis of the bacterial microbiome in one alpine oligotrophic and in one subalpine mesotrophic lake, which were sampled over two consecutive years at different time scales. We found that in both lakes, homogeneous selection (i.e., a deterministic process) was the main assembly process at the annual scale and explained 66.7% of the bacterial community turnover, despite differences in diversity and temporal variability patterns between ecosystems. However, in the alpine lake, homogenizing dispersal (i.e., a stochastic process) was the most important assembly process at the short‐term (daily and weekly) sampling scale and explained 55% of the community turnover. Alpha diversity differed between lakes, and seasonal stability of the bacterial community was more evident in the oligotrophic lake than in the mesotrophic one. Our results demonstrate how important forces that govern temporal changes in bacterial communities act at different time scales. Overall, our study validates on a quantitative basis, the importance and dominance of deterministic processes in structuring bacterial communities in freshwater environments over long time scales.  相似文献   

18.
19.
There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high‐altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β‐diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High‐altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β‐diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β‐diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter‐ and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies.  相似文献   

20.
Plantations are established for a variety of purposes including wood production, soil and water conservation, and carbon sequestration. However, their implications for species diversity are considerably debated. To assess restoration effect of species diversity in plantations after 50 years’ natural restoration, understory herb species diversity of Chinese pine (Pinus tabulaeformis) plantations were characterized and compared with secondary growth oak (Quercus wutaishanica) forests by additive partitioning across three different nested spatial scales (subplot, plot and site scales) in the middle of the Loess Plateau, northwestern China. Whether these two forest types demonstrate different structuring processes was also examined by quantifying the relative contributions of space and the environment on community composition. Overall, the two forests displayed similar accumulation of species diversity across spatial scales. The contribution of species diversity components increased with the spatial scale, and both forests displayed lower alpha diversity at the subplot scale but higher beta diversity at the plot and site scales. There was no significant difference in alpha or beta diversity between the two forests at any of the three scales, but in species compositions at the subplot and plot scales (p < 0.05). The diversity of both forest types were simultaneously governed by environmental and spatial processes, with the exception of a greater contribution of each component in the secondary growth oak forests, but both forests were dominated by environmental processes. Our study highlight the significant role of spatial scales in assessing the result of biodiversity restoration of plantations. These results suggest that pine plantations function in a similar manner as secondary growth oak forests for understory herb diversity, albeit with different community compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号