首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Numbers of plant species were recorded in species‐rich meadows in the Bílé Karpaty Mts., SE Czech Republic, with the aim to evaluate the sampling error made by well‐trained observers. Five observers recorded vascular plants in seven plots ranging from 9.8 cm2 to 4 m2 independently and were not time‐limited. In larger plots a discrepancy of 10–20% was found between individual estimates, in smaller plots discrepancy increased to 33%, on average. The gain in observed species richness by combining records of individual observers (in comparison with the mean numbers estimated by single observers) decreased from the smallest plot (27–82% for two to five observers) to the largest one (13–25%). However, after misidentified and suspicious records were eliminated, the gain was much lower and became scale‐independent; two observers added 12% species, on average, and the increase by combining species lists made by three or more observers was negligible (3% more on average). It is concluded that most discrepancies between individual observers were caused by misidentification of rare seedlings and young plants. We suggest that in species‐rich meadows plants should be recorded by at least three observers together and that they should consult all problematic plant specimens together in the field, to minimize errors.  相似文献   

2.
3.
Abstract. The effects of competition on individual fitness and species diversity were investigated in a first‐year old field by comparing the natural community to an experimentally‐determined null community. The species pool for the null community was estimated from low‐density plots, and hypothetical sample plots in the null community were constructed by random sampling from the species pool. Individual plants were larger in low‐density plots than control plots, indicating that competition reduced individual fitness. Competition appeared to reduce diversity in half the plots (i.e. species richness and diversity were lower than in hypothetical null community plots with the same number of individuals), but did not affect diversity in the other plots. However, the reduction in diversity could be explained as an artifact caused by spatial aggregation in control plots. The magnitude of the effects of competition on diversity did not change with plot density, and no species consistently increased or decreased in relative abundance as plot density increased. We conclude that competition had no effect on diversity in this community, despite the strong effect on individual growth.  相似文献   

4.
5.
6.
Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large‐scale determinants of species richness in a fragmented agro‐ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro‐ecosystem in the Southern Judea Lowland, Israel, within a desert–Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225 m2). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale‐dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale‐dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi‐factorial approach and multi‐scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.  相似文献   

7.
8.
9.
Abstract. Livestock overgrazing and stream incision in the western USA often result in encroachment and dominance of Artemisia tridentata ssp. tridentata (Big sagebrush) in riparian areas that formerly supported meadows. To define the alternative states and thresholds for these ecosystems, we conducted a restoration experiment that included sites with high, intermediate or low water tables. We used a paired‐plot approach in which one plot on each site was burned and seeded with native grasses and forbs typical of naturally occurring dry meadow and Artemisia/Leymus cinereus ecological types, while adjacent unburned plots served as controls. Sites with high and intermediate water tables had greater initial abundances of perennial grasses typical of dry meadows, such as Leymus triticoides and Poa secunda ssp. juncifolia, and these species increased after the burn. In contrast, sites with low water tables were dominated by annual forbs such as Chenopo‐dium album and Descurainia pinnata after the burn. Biomass increased progressively from 1997 to 1999 on burned plots, while controls showed little change. Burning effects were microsite specific, with former Artemisia microsites exhibiting lower biomass than interspaces initially, but similar or higher biomass by the third year. Establishment of seeded species was low and species composition was determined largely by pre‐burn vegetation. Artemisia dominated sites with high water tables appear to represent an alternative state of the dry meadow ecological type, while sites with low water table sites have crossed an abiotic threshold governed by water tables and represent a new ecological type. Burning is an effective tool for restoring relatively high water table sites, but low water table sites will require burning and seeding with species adapted to more xeric conditions.  相似文献   

10.
Tractable space‐time point processes models are needed in various fields. For example in weed science for gaining biological knowledge, for prediction of weed development in order to optimize local treatments with herbicides or in epidemiology for prediction of the risk of a disease. Motivated by the spatio‐temporal point patterns for two weed species, we propose a spatio‐temporal Cox model with intensity based on gamma random fields. The model is an extension of Neyman–Scott and shot‐noise Cox processes to the space‐time domain and it allows spatial and temporal inhomogeneity. We use the weed example to give a first intuitive interpretation of the model and then show how the model is constructed more rigorously and how to estimate the parameters. The weed data are analysed using the proposed model, and both spatially and temporally the model shows a good fit to the data using classical goodness‐of‐fit tests.  相似文献   

11.
Question: Does the development of Brachystegia‐Julbernardia (miombo) woodland after felling, and under a variable fire regime, occur via a serai stage of fire‐tolerant species? Location: Four sites in central Zambia, Africa. Methods: Trees in replicate plots were clear‐cut and stumps and resprouts enumerated. Species recruited into the tree layer (> 2.0 m tall) were monitored for 11 years (1991–2001) and fire occurrence and herbaceous biomass assessed annually to determine fuel loads. Results: Fire frequency was variable at the study sites and fuel loads were generally too low to suppress woodland regeneration after felling. However, at one site a change from low to high fire frequency arrested woodland development and triggered a regression towards a ‘fire‐trap’ vegetation type in which a few fire‐tolerant species survived. There was no evidence to support the hypothesis that miombo woodland regeneration is facilitated by a sere of fire‐tolerant species. All regrowth after felling was from resprouting plants present before felling. Trees with a previous history of felling sprouted more vigorously than trees that had not been felled before. Species richness in the tree layer increased with time since felling because resprout species had different height growth rates. Conclusion: The resilience of miombo trees after clear‐felling is largely due to their capacity to regenerate vegetatively from resprouts and stumps after release from frequent fires. Coppicing is therefore recommended as a suitable management technique for miombo woodland in central southern Africa.  相似文献   

12.
Analyses of the interspecific differences in macropod home range size suggest that habitat productivity exerts a greater influence on range size than does body mass. This relationship is also apparent within the rock‐wallaby genus. Lim reported that yellow‐footed rock‐wallabies (Petrogale xanthopus xanthopus) inhabiting the semi‐arid Flinders Ranges (South Australia) had a mean home range of 170 ha. While consistent with the hypothesis that species inhabiting less productive habitats will require larger ranges to fulfil their energetic requirements, the ranges reported by Lim were considerably larger than those observed for heavier sympatric macropods. The aim of the current study was to document the home range dynamics of P. x. celeris in central‐western Queensland and undertake a comparison with those reported for their southern counterparts. Wallaby movements were monitored at Idalia National Park, between winter 1992 and winter 1994. Male foraging ranges (95% fixed kernel; 15.4 ha, SD = ±7.8 ha) were found to be significantly larger than those of female wallabies (11.3 ha, SD = ±4.9 ha). Because of varying distances to the wallabies' favoured foraging ground (i.e. an adjacent herb field), the direction in which the wallabies moved to forage also significantly affected range size. Mean home range size was estimated to be 23.5 ha (SD = ±15.2 ha; 95% fixed kernel) and 67.5 ha (SD = ±22.4 ha; 100% minimum convex polygon). The discrepancy between these two estimates resulted from the exclusion of locations, from the 95% kernel estimates, when the wallabies moved to a water source 1.5 km distant from the colony site. The observed foraging and home ranges approximated those that could be expected for a macropod inhabiting the semi‐arid zone (i.e. 2.4 times larger‐than‐predicted from body mass alone). Possible reasons for the disparity between the current study and that of Lim are examined.  相似文献   

13.
14.
15.
16.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

17.
Oliver Bader 《Proteomics》2013,13(5):788-799
MALDI‐TOF MS‐based species identification has found its place in many clinical routine diagnostic laboratories over the past years. Several well‐established commercial systems exist and these allow precise analyses not only among bacteria, but also among clinically important yeasts. This methodology shows higher precision than biochemical and microscopic methods at significantly reduced turnaround times. Furthermore, the differentiation of different filamentous fungi including most dermatophytes and zygomycetes has been established. The direct identification of yeasts from blood culture bottles will be possible in a routine fashion with new standardized procedures. In addition to species identification, the MALDI‐TOF MS technology offers several further possibilities, like assays to detect or predict resistance phenotypes in fungi as well as subtyping approaches to detect clinically relevant subgroups. The differences between the commercial systems are discussed with respect to fungi and an overview of their performances provided. Factors influencing outcome of MALDI‐TOF‐based species identification are discussed.  相似文献   

18.
19.
Abstract. Development of semi‐natural vegetation has recently been a primary concern of restoration efforts. A primary management question is whether active intervention is required or spontaneous secondary succession could suffice. We studied 54 old‐fields in central Hungary, which differed in time since abandonment but which had similar environmental conditions and management histories. The sites were grouped into four age groups according to the time elapsed since cultivation abandonment: 1–5, 6–10, 11–23 and 24–33 yr. In each old‐field we recorded the species and estimated their abundances. We grouped species in two ways: according to life form (annuals, biennials, perennials, woody plants) and according to coenological behaviour (weeds, sand and steppe generalists, specialists). We analysed the changes in species number and abundance in these categories as a function of site age. Contrary to other successional studies, the total number of species did not change significantly among the four age groups. A significant change was detected between the first two age groups as to life‐form composition. Species number and abundance of annuals decreased, while the perennials and woody plants increased. As to coenological behaviour, species number changed only in the first two age groups, while abundance changed in the first three. Weeds quickly disappeared and specialists established and spread, while the species number and abundance of generalists did not change significantly. We concluded that the basic shifts in species composition are almost completed within 10 yr. Most of the late successional species colonized and weeds disappeared. We conclude that there was no need for active intervention in this system: the spontaneous secondary succession leads to semi‐natural vegetation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号