首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traits are important for understanding how plant communities assemble and function, providing a common currency for studying ecological processes across species, locations, and habitat types. However, the majority of studies relating species traits to community assembly rely upon vegetative traits of mature plants. Seed traits, which are understudied relative to whole‐plant traits, are key to understanding assembly of plant communities. This is particularly true for restored communities, which are typically started de novo from seed, making seed germination a critical first step in community assembly and an early filter for plant establishment. We experimentally tested the effects of seed traits (mass, shape, and embryo to seed size ratio) and phylogeny on germination response in 32 species commonly used in prairie grassland restoration in the Midwestern USA, analyzing data using time‐to‐event (survival) analysis. As germination is also influenced by seed dormancy, and dormancy break treatments are commonly employed in restoration, we also tested the effects of two pretreatments (cold stratification and gibberellic acid application) on time to germination. Seed traits, phylogeny, and seed pretreatments all affected time to germination. Of all traits tested, variables related to seed shape (height and shape variance) best predicted germination response, with high‐variance (i.e., pointier and narrower) seeds germinating faster. Phylogenetic position (the location of species on the phylogenetic tree relative to other tested species) was also an important predictor of germination response, that is, closely related species showed similar patterns in time to germination. This was true despite the fact that all measured seed traits showed phylogenetic signal, therefore phylogeny provided residual information that was not already captured by measured seed traits. Seed traits, phylogenetic position, and germination pretreatments were important predictors of germination response for a suite of species commonly used in grassland restoration. Shape traits were especially important, while mass, often the only seed trait used in studies of community assembly, was not a strong predictor of germination timing. These findings illustrate the ecological importance of seed traits that are rarely incorporated into functional studies of plant communities. This information can also be used to advance restoration practice by guiding restoration planning and seed mix design.  相似文献   

2.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

3.
Question: Is the assumption of trait independence implied in Westoby's (1998) leaf‐height‐seed (LHS) ecology strategy scheme upheld in a Mediterranean grazing system dominated by annuals? Is the LHS approach applicable at the community level? Location: Northern Israel. Methods: LHS traits (specific leaf area [SLA], plant height and seed mass), and additional leaf traits (leaf dry matter content [LDMC], leaf area, and leaf content of nitrogen [LNC], carbon [LCC], and phosphorus [LPC]), were analyzed at the species and community levels. Treatments included manipulations of grazing intensity (moderate and heavy) and protection from grazing. We focused on species comprising 80% of biomass over all treatments, assuming that these species drive trait relationships and ecosystem processes. Results: At the species level, SLA and seed mass were negatively correlated, and plant height was positively correlated to LCC. SLA, seed mass, and LPC increased with protection from grazing. At the community level, redundancy analysis revealed one principal gradient of variation: SLA, correlated to grazing, versus seed mass and plant height, associated with protection from grazing. We divided community functional parameters into two groups according to grazing response: (1) plant height, seed mass, LDMC, and LCC, associated with protection from grazing, and (2) SLA, associated with grazing. Conclusions: The assumption of independence between LHS traits was not upheld at the species level in this Mediterranean grazing system. At the community level, the LHS approach captured most of the variation associated with protection from grazing, reflecting changes in dominance within the plant community.  相似文献   

4.
It is widely recognized that colonists and competitors dominate early and late succession, respectively, with selected species having different colonizing and competitive abilities. However, it remains unknown whether colonizing and competitive ability can determine species abundance directly over succession. The data for five key functional traits were collected (photosynthesis rate, leaf turgor loss point, leaf proline content, seed mass, and seed germination rate), which are direct indicators of plant competitive and colonizing abilities including growth, drought and cold stress resistance, dispersal, and seed dormancy. Here, we tested the effects of colonizing and competitive abilities on species abundance, by employing a linear mixed‐effects model to examine the shifts in the relationship between species abundance and these five colonization and competition‐related traits in species‐rich subalpine secondary successional meadows (at 4, 6, 10, 13 years of age, and undisturbed, respectively) of the Qinghai–Tibetan Plateau. The abundant species at the early‐successional meadows tend to have high photosynthetic rate, high leaf proline content, low seed mass, and seed germination rate for having high colonizing ability, but low competitive ability. By contrast, late‐successional communities tend to be dominated by species with high competitive ability, but low colonizing ability, indicated by large seeds, high seed germination rate, low photosynthetic rate, and leaf proline content. The observed directional shifts in the relationships between traits (photosynthetic rate, leaf proline content, seed mass, and seed germination rate) and abundance with successional age, bring two new understandings of community assembly during succession of subalpine meadows in the Qinghai–Tibetan Plateau. First, it discloses that the differences in species abundance over succession can be directly attributed to differences in colonizing and competitive abilities of different species. Second, it expands the effects of multiple life historical differences including growth, resource competitive ability, cold stress resistance, dispersal, and seed germination strategy, represented by functional traits on community assembly along succession, that is, from the species to the community level.  相似文献   

5.
Several theoretical and empirical studies have examined the influence of environmental conditions on seed traits and germination strategies of annual species. A positive relationship between seed mass and dormancy has been described for annuals occupying climatically unpredictable ecosystems. Larger-seeded species tend to have higher seedling survival rates, while dormancy allows a bet-hedging strategy in unpredictable environments. Until now, these ideas have been addressed primarily for only one or a few focal species, without considering differences among populations and communities. The novelty of the present study lies in the population and community-level approach, where a comprehensive seed trait database including 158 annual species occurring along a gradient of rainfall variability and aridity in Israel was used to ask the following question: Does average seed mass and dormancy of annual populations and communities decrease with increasing aridity and rainfall unpredictability?Soil seed bank samples were collected at the end of the summer drought, before the onset of the rains, from four plant communities. Germination was tested under irrigated conditions during three consecutive germination seasons to determine the overall seed germinability in each soil sample. Seed mass was obtained from newly produced seeds collected at the study sites in late spring. The community level results showed that, in contrast to common theoretical knowledge, seed mass and dormancy of the dominant annual species decreased with increasing aridity and rainfall variability. Accordingly, a negative correlation was found between seed mass and seed germination fractions. The present study demonstrates that an analysis of seed traits along climatic gradients is significantly improved by approaches that target both population and community levels simultaneously. A critical evaluation sheds new light upon the selective pressures that act on seed ecology of annuals along a climatic gradient and facilitates formulation of more mechanistic hypotheses about factors governing critical seed traits.  相似文献   

6.
1. New logical and analytical frameworks for studying functional traits have led to major advances in plant and freshwater ecology at local and global scales. The ecological and taxonomic diversity of terrestrial adult beetles (Coleoptera) means that functional trait approaches should have considerable power to illuminate the function not only of these animals but also of the ecosystems in which they occur. 2. Even though the functional trait concept is not new in ecology, it is still plagued with inconsistencies in methodology and terminology. Plant‐based studies have shown that an integrated and relatively consistent functional trait approach facilitates comparisons between studies, and allows the full utility and predictive capacity of trait‐based approaches to be realised. 3. This review outlines a logical framework for adult beetle functional trait studies using uniform terminology and methodology similar to those used by plant ecologists. Beetle life‐history and ecomorphological trait studies are synthesised and it is shown that a combination of both is analogous to the functional trait approach. A general functional trait list for beetles and potential functional links is outlined, as are potential analysis approaches. A consistent functional trait approach, coupled with advances in molecular techniques, has the capability to provide deeper insights into beetle community assembly and how beetles impact ecosystems and will enable worldwide comparisons and predictions to be made.  相似文献   

7.
  • Seed germination is the earliest trait expressed in a plant's life history, and it can directly affect the expression of post‐germination traits. Plant height is central to plant ecological strategies, because it is a major determinant of the ability of a species to compete for light. Thus, linking seed germination and plant height at the community level is very important to understanding plant fitness and community structure.
  • Here, we tested storage condition and temperature requirements for germination of 31 species from a wetland plant community on the eastern Tibet Plateau and analysed correlation of germination traits with plant height in relation to storage condition.
  • Germination percentage was positively related to plant height, and this relationship disappeared when seeds were incubated at a low temperature (i.e. 5 °C) or after they were stored under wet‐cold conditions. The response of seeds to dry+wet–cold storage was negatively related to plant height. Based on the scores of each species on the first two principal components derived from PCA, species were classified into two categories by hierarchical clustering, and there was a significant difference between germination and plant height of species in these two categories.
  • These results suggest that the requirements for seed germination together with seasonal change in environmental conditions determine the window for germination and, in turn, plant growth season and resource utilisation and ultimately plant height.
  相似文献   

8.
Fleshy-fruited plants rely on animal frugivores to disperse their seeds, and seed removal by frugivores may leave an imprint on seedling recruitment. However, to what extent plant–frugivore interactions are related to seedling recruitment has rarely been quantified at the community level, especially in species-rich tropical forests. In this study, we tested the effect of different plant traits on fruit removal by frugivores and tested the relative importance of fruit removal, plant traits and abiotic factors for seedling recruitment. We quantified plant–frugivore interactions of 22 fleshy-fruited plant species consumed by 56 diurnal frugivore species, and counted the number of seedlings that emerged along an elevational gradient in the Colombian Andes. We measured a set of plant traits (i.e., crop size; fruit size; seed load and mass; fruit nutritional contents), estimated the density of adult plants and recorded relevant abiotic factors (light, temperature and humidity). We found that fruit removal by frugivores was positively associated with crop size, but negatively associated with fruit length and unrelated to seed load and fruit nutritional content. Seedling densities were positively related to the density of adult plants, seed mass and fruit removal by animals. We found no relationship between abiotic factors and seedling recruitment. Our results indicate that fruit abundance and morphology are important determinants of fruit removal and that fruit removal is positively associated with seedling recruitment accounting for effects of species abundance and plant traits. We conclude that plant traits shape fruit removal and seedling recruitment at the community level, while these two crucial processes of forest regeneration are directly linked by seed dispersal of animals.  相似文献   

9.
Seed germination triggered by light exposure (positive photoblastism) has been determined in quantitative studies for numerous plant families and species. For Cactaceae, positive photoblastism is thought to be associated with life form and seed mass, but this association has never been evaluated. To explore hypotheses on associations between seed mass, seed dispersal, seed dormancy, life form, taxa and plant height with Relative Light Germination (RLG) in Cactaceae, we evaluated the effect of light on seed germination of 136 taxa. The taxa studied are native to several countries: México, Chile, Argentina, Brazil, Perú, USA, and Venezuela. Seed traits contrasted with RLG were life form, seed mass, seed dispersal, seed dormancy, adult plant height and taxon. We found some differences between RLG among taxa; Cacteae, Pachycereeae and Trichocereeae had higher RLG than Notocacteae. RLG was lower for seeds from taller than for shorter taxa, and lower for taxa with heavier seeds than for taxa with lighter seeds. Dispersal syndrome groups varied with RLG. RLG did not differ between cylindrical and globose taxa. Trends found here were in agreement with expectations for small-seeded species to have a light requirement to germinate more often than large-seeded species. This is the first time that cactus height is related to photoblastism. It is possible that seeds from tall plants are larger and thus have the capacity to produce taller seedlings than those from small plants, and that seedlings from large seeds with more resources have the ability to emerge from greater soil depths than those from small seeds.  相似文献   

10.
Questions: Is the red fox a potential vector for epizoochorous seed dispersal? Can seed attachment and retention be predicted from plant and seed traits? Location: Grasslands in southern Norway. Methods: Epizoochorous seed attachment on the red fox was studied by walking a dummy fox through the vegetation and comparing seeds found on the dummy with the estimated seed availability in the vegetation. Seed retention, i.e. the ability of different seeds to stay on the fox, was estimated in a separate experiment. Seed attachment and retention were related to plant and seed traits using statistical models that account for heteroscedasticity and zero‐inflated data. Results: The majority of seeds attached to the fox originated from a few species, but also species without specific seed traits that are supposed to enhance epizoochory attached at least some seeds to the fox. The probability of seed attachment was positively related to plant height, bristle and hooked seed appendages, and negatively related to winged appendages, seed mass, and seed sphericity. Seed retention was positively related to the seed traits bristles, hooks and pappus. For several species, the results indicate a high potential for dispersal over long distances. Conclusions: In modern agricultural landscapes, large herbivores are often restricted in their mobility or are found at low densities, and other animal vectors may therefore be important for seed dispersal. In our study, a range of plant species were able to disperse by attaching seeds to, and having their seeds retained in, the fox fur some distance. We suggest that the red fox may be an important vector for epizoochorous seed dispersal in the agricultural landscape.  相似文献   

11.
Functional traits are increasingly recognized as an integrative approach by ecologists to quantify a key facet of biodiversity. And these traits are primarily expressed as species means in previous studies, based on the assumption that the effects of intraspecific variability can be overridden by interspecific variability when studying functional ecology at the community level. However, given that intraspecific variability could also have important effects on community dynamics and ecosystem functioning, empirical studies are needed to investigate the importance of intraspecific variability in functional traits. In this study, 256 Scutiger boulengeri tadpole individuals from four different populations are used to quantify the functional difference between populations within a species, and the relative contribution of inter‐ and intrapopulation variability in functional traits. Our results demonstrate that these four populations differ significantly in functional attributes (i.e., functional position, functional richness, and low functional overlap), indicating that individuals from different populations within a species should be explicitly accounted for in functional studies. We also find similar relative contribution of inter‐ (~56%) and intrapopulation (~44%) variation to the total variability between individuals, providing evidence that individuals within populations should also be incorporated in functional studies. Overall, our results support the recent claims that intraspecific variability cannot be ignored, as well as the general idea of “individual level” research in functional ecology.  相似文献   

12.
The circadian clock (the endogenous mechanism that anticipates diurnal cycles) acts as a central coordinator of plant activity. At the molecular and organism level, it regulates key traits for plant fitness, including seed germination, gas exchange, growth and flowering, among others. In this article, we explore current evidence on the effect of the clock for the scales of interest to ecologists. We begin by synthesizing available knowledge on the effect of the clock on biosphere–atmosphere interactions and observe that, at least in the systems where it has been tested, the clock regulates gas exchange from the leaf to the ecosystem level, and we discuss its implications for estimates of the carbon balance. Then, we analyse whether incorporating the action of the clock may help in elucidating the effects of climate change on plant distributions. Circadian rhythms are involved in regulating the range of temperatures a species can survive and affects plant interactions. Finally, we review the involvement of the clock in key phenological events, such as flowering time and seed germination. Because the clock may act as a common mechanism affecting many of the diverse branches of ecology, our ultimate goal is to stimulate further research into this pressing, yet unexplored, topic.  相似文献   

13.
荒漠植物是干旱区具有独特功能性状与资源权衡表征的地带性植物。植物功能性状及其多样性格局与资源权衡策略对群落结构优化和生态系统功能改善起着关键作用。该综述主要从荒漠植物组织、器官功能性状特征、功能性状权衡策略、功能多样性组分及测度3个方面梳理了荒漠植物性状权衡策略与功能多样性研究的进展脉络:1)荒漠植物独特的根、茎、叶功能性状特征揭露了植被对环境变化的响应以及对生态系统功能的影响,基于植物功能性状的研究有助于解决许多生态学的关键性问题;2)作为植物功能性状之间存在的最普遍的联系,权衡策略是经过自然筛选后形成的性状组合,关键性状已经被发掘并创造性的提出了"经济谱"概念。荒漠植物研究过程中,应分析其根、茎、叶的特征属性筛选关键性状,着眼于关键性状间及整株植物性状间的权衡策略;3)功能多样性是影响生态系统运行和发挥作用的生物多样性的重要组成部分,荒漠植物功能多样性能预测和指示群落中物种对于荒漠生态系统功能发挥和过程变化的影响。功能多样性的组分可以从不同角度反映群落的生态位占据状况和资源利用程度,指数的选择要体现在群落内部物种的功能特征之间的差异程度,同时要考虑这些物种自身在群落内的优势程度。本研究为未来荒漠植物功能性状及多样性研究梳理了一些新的研究方向和内容,期望为荒漠植物生理生态学研究的选题和发展提供一些新的思路。  相似文献   

14.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

15.
Understanding the key aspects of plant regeneration from seeds is crucial in assessing species assembly to their habitats. However, the regenerative traits of seed dormancy and germination are underrepresented in this context. In the alpine zone, the large species and microhabitat diversity provide an ideal context to assess habitat‐related regenerative strategies. To this end, seeds of 53 species growing in alpine siliceous and calcareous habitats (6230 and 6170 of EU Directive 92/43, respectively) were exposed to different temperature treatments under controlled laboratory conditions. Germination strategies in each habitat were identified by clustering with k‐means. Then, phylogenetic least squares correlations (PGLS) were fitted to assess germination and dormancy differences between species’ main habitat (calcareous and siliceous), microhabitat (grasslands, heaths, rocky, and species with no specific microhabitats), and chorology (arctic–alpine and continental). Calcareous and siliceous grasslands significantly differ in their germination behaviour with a slow, mostly overwinter germination and high germination under all conditions, respectively. Species with high overwinter germination occurs mostly in heaths and have an arctic–alpine distribution. Meanwhile, species with low or high germinability in general inhabit in grasslands or have no specific microhabitat (they belong to generalist), respectively. Alpine species use different germination strategies depending on habitat provenance, species’ main microhabitat, and chorotype. Such differences may reflect adaptations to local environmental conditions and highlight the functional role of germination and dormancy in community ecology.  相似文献   

16.
植物有性生殖对大气CO2浓度变化响应的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
 比较详细地概述了过去数十年关于在大气CO2浓度升高条件下,植物有性生殖特性发生变化的主要研究成果。随着植物相对生长速率加快,植株达到有性生殖所需形体大小的时间变短,开花期提前,生殖器官的生物量也相应提高,其主要表现为开花数量、花粉和花蜜产量、果实数量与大小、种子大小与产量等均有不同程度的增加。对大多数农作物而言,种子产量的增加主要通过种子数量的增加,而与种子大小变化关系不大。通常,高浓度CO2对豆科植物种子含氮量影响比较小, 却能显著地降低非豆科植物种子含氮量。不同类型植物的生殖生物量增加趋势存在一定的规律性,如不定型植物>定型植物,豆科植物>C3非豆科植物>C4植物,栽培植物>野生植物。针对国内外对CO2浓度升高影响植物有性生殖特性的研究中存在的不足,该文提出了今后研究应该注意的问题。  相似文献   

17.
Functional traits have long been considered the ‘holy grail’ in community ecology due to their potential to link phenotypic variation with ecological processes. Advancements across taxonomic disciplines continue to support functional ecology's objective to approach generality in community assembly. However, a divergence of definitions, aims and methods across taxa has created discord, limiting the field's predictive capacity. Here, we provide a guide to support functional ecological comparisons across taxa. We describe advances in cross‐taxa functional research, identify gaps in approaches, synthesize definitions and unify methodological considerations. When deciding which traits to compare, particularly response traits, we advocate selecting functionally analogous traits that relate to community assembly processes. Finally, we describe at what scale and for which questions functional comparisons across taxa are useful and when other approaches may be more constructive. Our approach promotes standardized methods for integrative research across taxa to identify broad trends in community assembly.  相似文献   

18.
Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi‐dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community‐weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition‐related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf‐economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.  相似文献   

19.
Trait‐based approaches can provide a useful tool for linking plant attributes to community structure and ecosystem function. Seed mass and plant height play important roles in the dynamics of plant communities, but few empirical community level studies have tested this, especially in stressful environments. The aim of the present study was to determine if there is a relationship between functional traits (seed mass and plant height) and changes in species relative abundance (SRA) in response to grazing and fertilization. We measured SRA and plant functional traits for 40 common species in a Tibetan Plateau alpine meadow. In the fertilized meadow, seed mass and plant height was significantly positively correlated with the relative abundance of the species. In the grazed meadow, these variables were significantly negatively correlated. Our results demonstrates that plant functional traits can be used to predict the change of SRA in plant community. Grazing promotes the dominance of small‐seeded and short‐stature species, and fertilization facilitates the occurrence of large‐seeded and tall‐stature species.  相似文献   

20.
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a ‘Holy Grail’ in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community‐ and ecosystem‐level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait‐based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta‐analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号