首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367–606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients’ lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.  相似文献   

4.
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4+ T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.Adenoviruses have been a focus of interest as vaccine vectors for more than a decade and have been tested in various preclinical and clinical studies for vaccination against viral and bacterial infections (reviewed in reference 38). This interest is based on the ability of adenoviral vectors to induce high antibody titers and robust cytotoxic T-lymphocyte (CTL) responses and on the high immunogenicity of the vector, which might have an adjuvant effect on vaccination (17). Adenoviral vectors have also been extensively evaluated for immunization against HIV (reviewed in reference 1), where they were used either alone or in combination with plasmid DNA or protein in prime-boost immunizations. However, vaccination with adenoviral vectors against HIV showed no effectiveness in a large phase IIb study (4), but it is conceivable that the observed lack of effectiveness was due to the choice of vaccine antigen rather than the vector itself, as the vaccine relied exclusively on the induction of CTL responses, and the outcome was unexpected given previous results from studies in nonhuman primates (33, 42). The findings of the phase IIb study brought about a shift of focus from the CTL response to a more balanced immune response, including neutralizing antibodies, that is now expected to be necessary for protection from HIV infection.Apart from adenoviral vectors that encode vaccine antigens, there have also been approaches to modify adenoviral capsid proteins to include antigenic epitopes. These were mostly inserted into external loops of the hexon protein (5, 22, 25, 26, 43), which is the main component of the adenovirus capsid, but also other components of the capsid, such as fiber, protein IX, and penton base, have been evaluated (22). These studies showed that incorporation of single epitopes into capsid proteins of adenovirus leads to induction of antibody and CD4+ T-cell responses, suggesting that incorporation of epitopes into the adenovirus capsid is a useful tool for epitope-based vaccination.Fusion of a polylysine sequence or an arginine-glycine-aspartic acid motif to adenovirus pIX has been shown to be a tool for redirection of adenovirus tropism to heparan sulfate and αvβ integrins, respectively (9, 41). By fusing green fluorescent protein and luciferase to the C terminus of pIX, it was shown that relatively large proteins can be displayed on the adenovirus capsid while maintaining the protein''s conformation and function as well as virion integrity (24, 28).Here we describe a novel vaccination approach that combines genetic and protein vaccination by using adenoviral vectors not only as gene expression vectors but also as nanoparticle carriers for a vaccine antigen to improve the vaccination efficiency through enhanced induction of antibodies. Display of the vaccine antigen on the adenovirus capsid was achieved by fusion of the antigen to the C terminus of the adenovirus capsid protein pIX. It was shown before that the presentation of antigens in ordered arrays leads to improved antibody responses by cross-linking of B-cell receptors (13). As the adenoviral capsid is highly structured, we hypothesized that fusion to pIX would result in an ordered display of the antigen, presumably facilitating antibody induction.We evaluated this vaccine approach using the Friend virus (FV) infection model. FV is an immunosuppressive retroviral complex that consists of Friend murine leukemia virus (F-MuLV) and the replication-deficient, F-MuLV-dependent spleen focus-forming virus. FV infection of susceptible mice induces rapid polyclonal erythroblast proliferation, which leads to splenic enlargement and erythroleukemia and takes a lethal course also in adult mice (14). Protection from FV infection has been shown to require complex immune responses involving antibodies as well as CD4+ and CD8+ T cells (7). FV is regarded as a useful retrovirus infection model because basic requirements for vaccine protection seem to be similar for FV and HIV infection (8). We demonstrated previously that the FV model is suitable to evaluate and improve adenoviral vectors for antiretroviral vaccination (2), as we showed that a heterologous prime-boost vaccination with adenovirus type 5 (Ad5) and fiber chimeric Ad5F35 vectors led to better protection from FV infection than homologous vaccination, which correlated with improved induction of neutralizing antibodies.For vaccination with expression/display vectors against FV we constructed a fusion protein of the adenoviral capsid protein pIX and the F-MuLV envelope protein gp70 and produced adenoviral vectors expressing the pIX-gp70 fusion protein, which was incorporated into the viral capsid. We vaccinated FV-susceptible CB6F1 hybrid mice with antigen expression/display vectors or with conventional antigen-expressing adenoviral vectors and analyzed the protection conferred by these two vaccines. Having demonstrated that the expression/display vector leads to better protection of mice from FV challenge, we constructed a panel of expression/display vectors displaying different fusion proteins containing F-MuLV Env or Gag in order to elucidate the underlying immunological mechanisms of the improved protection conferred by the adenoviral expression/display vectors.  相似文献   

5.
6.
A new experimentally simple nanosphere lithography method was used to fabricate gold ring and nanohole structures. The method is based on the simultaneous self-assembly of polystyrene microspheres and gold colloids in multilayers, by a vertical deposition method. Dissolution of polystyrene microspheres resulted in the formation of a monolayer, where holes are surrounded by gold nanoparticles. The dependency of the sensitivity of the sensor platform on the size of the holes and their density has been demonstrated. Furthermore, sensing experiments have shown a high sensitivity of the hole structure toward fibrinogen, amyloid-derived diffusible ligands, and a plant protein (AT5G07010.1). It was found that the position and shape of the localized surface plasmon resonance band changed significantly as a result of the antigen–antibody recognition event.  相似文献   

7.
Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented.OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays.Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect.Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses.  相似文献   

8.
Targeting dendritic cell-specific endocytic receptors using monoclonal antibodies fused to desired antigens is an approach widely used in vaccine development to enhance the poor immunogenicity of protein-based vaccines and to induce immune responses. Here, we engineered an anti-human DCIR recombinant antibody, which cross-reacts with the homologous cynomolgous macaque receptor and was fused via the heavy chain C-terminus to HIV Gagp24 protein (αDCIR.Gagp24). In vitro, αDCIR.Gagp24 expanded multifunctional antigen-specific memory CD4+ T cells recognizing multiple Gagp24 peptides from HIV-infected patient peripheral blood mononuclear cells. In non human primates, priming with αDCIR.Gagp24 without adjuvant elicited a strong anti-Gagp24 antibody response after the second immunization, while in the non-targeted HIV Gagp24 protein control groups the titers were weak. The presence of the double-stranded RNA poly(I:C) adjuvant significantly enhanced the anti-Gagp24 antibody response in all the groups and reduced the discrimination between the different vaccine groups. The avidity of the anti-Gagp24 antibody responses was similar with either αDCIR.Gagp24 or Gagp24 immunization, but increased from medium to high avidity in both groups when poly(I:C) was co-administered. This data provides a comparative analysis of DC-targeted and non-targeted proteins for their capacity to induce antigen-specific antibody responses in vivo. This study supports the further development of DCIR-based DC-targeting vaccines for protective durable antibody induction, especially in the absence of adjuvant.  相似文献   

9.
10.
根据GenBank上WSSV囊膜蛋白基因vp19和vp28的序列,设计并合成两对引物,PCR扩增得到vp19和vp28两基因,大小分别为370bp和630bp.通过EcoRI位点连接两基因,再按正确的阅读框插入表达载体pET-22b(+)中,构建出重组表达载体pET-vp(19+28)并转化大肠杆菌BL21(DE3).基因工程菌株35℃IPTG诱导,表达产物经SDS-PAGE检测显示有与预期大小41kDa相吻合的融合蛋白带.用Ni2+-柱纯化的基因工程蛋白免疫新西兰大白兔制备抗血清,进行螯虾活体中和病毒实验,结果表明抗血清对WSSV的中和效率达到了100%.  相似文献   

11.
根据GenBank上WSSV囊膜蛋白基因vp19和vp28的序列,设计并合成两对引物,PCR扩增得到vp19和vp28两基因,大小分别为370bp和630bp。通过EcoRI位点连接两基因,再按正确的阅读框插入表达载体pET-22b( )中,构建出重组表达载体pET-vp(19 28)并转化大肠杆菌BL21(DE3)。基因工程菌株35℃IPTG诱导,表达产物经SDS-PAGE检测显示有与预期大小41kDa相吻合的融合蛋白带。用Ni^2 -柱纯化的基因工程蛋白免疫新西兰大白兔制备抗血清,进行螯虾活体中和病毒实验,结果表明抗血清对WSSV的中和效率达到了100%。  相似文献   

12.
A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb). In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs) would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q), was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B) and 14/00/4 (subtype F), both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q). The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.  相似文献   

13.
14.
Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well.  相似文献   

15.
16.
Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acids were found on its envelope protein. Although most MAbs showing neutralizing activities exhibited enhancing activities at subneutralizing doses, one MAb (D1-IV-7F4 [7F4]) displayed neutralizing activities without showing enhancing activities at lower concentrations. In contrast, another MAb (D1-V-3H12 [3H12]) exhibited only enhancing activities, which were suppressed by pretreatment of cells with anti-FcγRIIa. Although antibody engineering revealed that antibody subclass significantly affected 7F4 (IgG3) and 3H12 (IgG1) activities, neutralizing/enhancing activities were also dependent on the epitope targeted by the antibody. 7F4 recognized an epitope on the envelope protein containing E118 (domain II) and had a neutralizing activity 10- to 1,000-fold stronger than the neutralizing activity of previously reported human or humanized neutralizing MAbs targeting domain I and/or domain II. An epitope-blocking enzyme-linked immunosorbent assay (ELISA) indicated that a dengue virus-immune population possessed antibodies sharing an epitope with 7F4. Our results demonstrating induction of these antibody species (7F4 and 3H12) in Mochizuki-immunized mice may have implications for dengue vaccine strategies designed to minimize induction of enhancing antibodies in vaccinated humans.  相似文献   

17.
The high-affinity in vivo interaction between soluble HIV-1 envelope glycoprotein (Env) immunogens and primate CD4 results in conformational changes that alter the immunogenicity of the gp120 subunit. Because the conserved binding site on gp120 that directly interacts with CD4 is a major vaccine target, we sought to better understand the impact of in vivo Env-CD4 interactions during vaccination. Rhesus macaques were immunized with soluble wild-type (WT) Env trimers, and two trimer immunogens rendered CD4 binding defective through distinct mechanisms. In one variant, we introduced a mutation that directly disrupts CD4 binding (368D/R). In the second variant, we introduced three mutations (423I/M, 425N/K, and 431G/E) that disrupt CD4 binding indirectly by altering a gp120 subdomain known as the bridging sheet, which is required for locking Env into a stable interaction with CD4. Following immunization, Env-specific binding antibody titers and frequencies of Env-specific memory B cells were comparable between the groups. However, the quality of neutralizing antibody responses induced by the variants was distinctly different. Antibodies against the coreceptor binding site were elicited by WT trimers but not the CD4 binding-defective trimers, while antibodies against the CD4 binding site were elicited by the WT and the 423I/M, 425N/K, and 431G/E trimers but not the 368D/R trimers. Furthermore, the CD4 binding-defective trimer variants stimulated less potent neutralizing antibody activity against neutralization-sensitive viruses than WT trimers. Overall, our studies do not reveal any potential negative effects imparted by the in vivo interaction between WT Env and primate CD4 on the generation of functional T cells and antibodies in response to soluble Env vaccination.The HIV-1 Envs mediate the entry of the virus into target cells and are the only virally encoded proteins exposed on the surface of the virus. HIV-1 Env is the sole target for neutralizing antibodies (Abs) and therefore is an important component of a vaccine designed to elicit protective antibody responses (4, 20). The viral spike is a trimer comprised of three heterodimers of the exterior envelope glycoprotein, gp120, noncovalently attached to the transmembrane protein, gp41. The gp120 subunit binds the primary receptor, CD4 (7), to form or to expose the gp120 coreceptor binding elements, which interact with the viral coreceptor, primarily CCR5 (1, 9, 12, 45). The highly conserved coreceptor binding site (CoRbs) overlaps the gp120 bridging sheet and also contains both proximal and distal elements of V3 (18, 32, 43, 45).In attempts to mimic the native trimeric structure of Env present on the virus, various forms of soluble Env trimers were designed (reviewed in reference 14). One design consists of cleavage-defective trimers derived from the primary R5 isolate YU2 that possess a heterologous trimerization motif derived from T4 bacteriophage fibritin (F; YU2 gp140-F) (3, 21, 34, 40, 50, 51). We recently demonstrated that the immunization of monkeys, but not rabbits, with gp140-F trimers resulted in the generation of Abs directed against the CoRbs of gp120 capable of cross-neutralizing HIV-2 (15). CoRbs-directed Abs (also referred to as CD4-induced, or CD4i, Abs) also were elicited in rabbits transgenic for human CD4 (15). Taken together, these data strongly suggest that Env interacts with high-affinity primate CD4 in vivo, resulting in the formation, or exposure, of a highly immunogenic gp120 determinant that overlaps the CoRbs. Early in infection, the frequency of HIV-1-infected individuals with significant antibody responses against the CoRbs is high (8, 33), and CoRbs-directed antibody responses are elicited abundantly in humans inoculated with Env-based immunogens (15). Collectively, these data suggest that the recognition of the HIV-1 CoRbs by naïve B cells is greatly increased when Env is presented in complex with high-affinity primate CD4, leading to a productive Ab response against this epitope (41). With rare exceptions, the majority of CoRbs-directed monoclonal antibodies (MAbs) do not neutralize HIV-1 primary viruses in vitro, bringing into question the utility of this region as a relevant neutralization target (23, 31, 47, 49). Strategies aimed to diminish vaccine-elicited B-cell responses to the CoRbs, and shift responses toward more accessible neutralization targets, represent one approach to improve the design of Env-based vaccine candidates. The selective manipulation of Env immunogens to decrease their CD4 binding capacity may reduce the elicitation of CoRbs-directed Abs and circumvent potential occlusion effects of the conserved CD4 binding site caused by CD4 itself.In addition to the potential effects of in vivo Env-CD4 interactions on the Ab repertoire elicited by Env-based immunogens, interactions between Env and CD4 also may have consequences on CD4+ T-cell responses. CD4 is an important costimulatory molecule expressed on several subsets of T cells and antigen-presenting cells, and interactions with Env were shown to alter the function of CD4-expressing T cells in a number of in vitro systems (13, 37, 44). The elimination of the Env-CD4 interaction in the context of vaccination may be beneficial to improve the elicitation of helper T-cell responses and effective neutralizing Ab responses. In vivo evaluation in subjects possessing high-affinity CD4 (i.e., rhesus macaques or humans) of CD4 binding-competent and CD4 binding-deficient Env immunogens so far have not been described.To address these questions, we designed Env trimer variants rendered CD4 binding defective through two distinct mechanisms. In the first variant, the interaction between CD4 and HIV-1 Env was directly disrupted by the introduction of a mutation (368D/R) in the CD4 binding loop of the gp120 outer domain (29). This alteration abolishes the initial binding of CD4 and most CD4 binding site (CD4bs)-directed MAbs (42) to variant forms of gp120 and would be expected to do the same in the soluble stable timer context. The aim of the second variant was to decrease the CD4 binding affinity while preserving the antigenicity of the CD4bs (48). This variant was generated in the soluble gp140-F trimers by the introduction of three point mutations, 423I/M, 425N/K, and 431G/E, in the β20 strand region of gp120. These mutations were suggested to favor a helix rather than the β20/21 antiparallel strands visible in the gp120 structure (23, 31, 47, 49). In the monomeric context, mutations in the β20 strand region of gp120 abolish binding by CoRbs-directed Abs, presumably because the bridging sheet cannot form (48). The introduction of the 423I/M, 425N/K, and 431G/E mutations in the trimer context therefore should disrupt the normally high-affinity gp120-CD4 interaction, while recognition by CD4bs Abs would not be affected. Indeed, a recent study provides a mechanistic basis for the impact of these mutations on CD4 binding (52). This study revealed that CD4 interacts with gp120 by a two-step binding mechanism in which the first step involves a direct, but low-affinity, CD4 interaction with the gp120 outer domain, while the second step requires a conformational change in gp120 to fully stabilize the high-affinity gp120-CD4 interaction.Here, we exploit this two-step model to generate novel CD4 binding-defective soluble trimers that, unlike the 368D/R trimers, possess a CD4bs surface that retains recognition by well-described CD4bs Abs. By immunizing rhesus macaques with the wild-type (WT) and CD4 binding-defective trimer variants, we demonstrate that similar levels of Env-specific Ab and T-cell responses were elicited in the three groups, suggesting that in vivo interactions between CD4 binding-competent (WT) Env and CD4 do not measurably affect T-cell responses against Env in this immunization regimen. However, the quality of the Ab response was markedly different between the groups. As hypothesized, CoRbs-directed Abs were elicited only in animals inoculated with WT trimers and not in those inoculated with 368D/R or 423I/M, 425N/K, and 431G/E trimers (hereafter referred to as 368 and 423/425/431 trimers, respectively). Importantly, we show that the 423/425/431 trimers retain the capacity to elicit binding and neutralizing CD4bs-directed Abs. In conclusion, the results generated in this study suggest that CD4 engagement by the WT soluble Env trimers did not impair the overall magnitude of the elicited Env-specific antibody or T-cell responses. Furthermore, our data provide new insights into the characteristics of Env that impact immunogenicity. The data also provide a potential path forward for the design of Env immunogens that have the capacity to elicit neutralizing Abs against the conserved gp120 CD4 binding surface while eliminating both the elicitation of nonneutralizing CoRbs-directed Abs and the potential occlusion of the CD4 binding surface of gp120 by the engagement of the primary virus receptor, CD4.  相似文献   

18.
本文应用空斑减少中和试验(PRNT)和细胞病变中和试验(cPENT)两种方法对出血热沙鼠肾细胞灭活疫苗扩大人体免疫后的血清进行中和抗体水平检测。根据两种方法对总计74人份的免疫后血清检测比较结果,两种方法检测的抗体阳转率和抗体水平(GMT)。CPENT法均高于PRNT法,经统计学处理均有显著性差异。不同免疫组的中和抗体水平比较结果,注射三针的阳转率(n=10,100%)高于两针组(n=10,20—30%);接种加氢氧化铝佐剂疫苗(n=13)较接种不加佐剂的两种疫苗(n=26)的抗体水平高,阳转率为92%—100%GMT为22—69;皮下途径(n=15)和肌肉途径(n=13)注射无明显差别,阳转率分别为87—93%和92—100%,GMT分别为29—46和22—61。以上结果进一步肯定沙鼠肾细胞疫苗的人体免疫性  相似文献   

19.

Background

The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8+ and CD4+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN) vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.

Methodology/Principal Findings

To establish the basis for a SAPN-based vaccine, B- and CD8+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP) and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids) that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP). We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year) protective antibody and poly-functional (IFNγ+, IL-2+) long-lived central memory CD8+ T-cells. Furthermore, we demonstrated that these Ab or CD8+ T–cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.

Conclusion

The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP) and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.  相似文献   

20.
为了增强HIV-1交叉中和表位的免疫原性,本研究使用PCR克隆技术将HIV-1三个具有一定广谱中和活性的线性抗原表位ELDKWA(简称2F5)、NWFDIT(简称4E10)和GPGRAFY(简称447-52D)基因分别融合到HBV S基因的3味端,构建了分别表达这三种融合基因的天坛株重组痘苗病毒疫苗RVJ1175S-2F5、RVJ1175S-4E10和RVJ1175S-447-52D,使用这三种重组痘苗病毒感染的细胞培养上清液经分离纯化制备了三种相应的蛋白亚单位疫苗PS-2F5、PS-4E10和PS-447-52D,对重组痘苗病毒和亚单位疫苗中三种融合抗原的生物学及免疫学特性进行了比较研究.PCR和测序结果表明,三种融合基因序列正确重组到痘苗病毒TK区,HBsAg的ELISA检测表明三种融合蛋白有效表达并分泌到细胞培养上清液中,SDS-PAGE凝胶电泳显示三种纯化后的融合蛋白均含分子量为23kD和27kD两种典型HBsAg条带,Western blot证明这两个条带均能与HBsAg抗体反应,并分别能与三种表位相应的HIV-1单抗2F5、4E10和447-52D反应.小鼠免疫结果显示,三种重组痘苗病毒疫苗和三种蛋白亚单位疫苗均能诱发较高水平的HBsAg抗体和相应HIV-1交叉中和表位抗体,蛋白亚单位疫苗诱生的这两类抗体均明显高于对应的重组痘苗病毒疫苗.这些结果为进一步研究三种表位抗体的中和活性和通过不同类型疫苗联合免疫进一步增强其免疫效果研究奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号