首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerated proteolysis of tropoelastin and elastin occurs in the arteries of chicks rendered nutritionally copper-deficient. The process results in part from decreased elastin crosslinking. Repletion of copper-deficient chicks with copper causes a deposition of elastin that is proteinase resistant. Resistance to proteolysis is conferred within 48 h of dietary copper repletion. Deposition of aorta elastin to near normal values occurs after 3-4 days in copper-repleted chicks. Moreover, elastolysis was enhanced when the content of dehydrolysinonorleucine in elastin was abnormally low. The chemical modification of lysyl residue in elastin by citroconylation, however, did not influence the rate of elastolysis. We have shown previously that tropoelastin messenger RNA activity and synthesis are not influenced by dietary copper deprivation (1986, Biochem. J. 236, 17-23). Rather, as demonstrated herein, the decrease in elastin content in arteries of copper-deficient birds appears to be more the result of enhanced degradation. Restoration of normal crosslinking restores deposition and imparts resistance to elastolysis. Moreover, serum appears to be a good source of elastolytic proteinases when the elastin substrate is partially or abnormally crosslinked.  相似文献   

2.
The elastin content of the chick thoracic aorta increases 2--3-fold during the first 3 weeks post-hatching. The deposition of elastin requires the covalent cross-linking of tropoelastin by means of lysine-derived cross-links. This process is sensitive to dietary copper intake, since copper serves as cofactor for lysyl oxidase, the enzyme that catalyses the oxidative deamination of the lysine residues involved in cross-link formation. Disruption of cross-linking alters tissue concentrations of both elastin and tropoelastin and results in a net decrease in aortic elastin content. Autoregulation of tropoelastin synthesis by changes in the pool sizes of elastin or tropoelastin has been suggested as a possible mechanism for the diminished aortic elastin content. Consequently, dietary copper deficiency was induced to study the effect of impaired elastin cross-link formation on tropoelastin synthesis. Elastin in aortae from copper-deficient chicks was only two-thirds to one-half the amount measured in copper-supplemented chicks, whereas copper-deficient concentrations of tropoelastin in aorta were at least 5-fold higher than normal. In spite of these changes, however, increased amounts of tropoelastin, copper deficiency and decreased amounts of elastin did not influence the amounts of functional elastin mRNA in aorta. Likewise, the production of tropoelastin in aorta explants was the same whether the explants were taken from copper-sufficient or -deficient birds. The lower accumulation of elastin in aorta from copper-deficient chicks appeared to be due to extracellular proteolysis, rather than to a decrease in the rate of synthesis. Electrophoresis of aorta extracts, followed by immunological detection of tropoelastin-derived products, indicated degradation products in aortae from copper-deficient birds. In extracts of aortae from copper-sufficient chicks, tropoelastin was not degraded and appeared to be incorporated into elastin without further proteolytic processing.  相似文献   

3.
Evidence is presented that indicates tropoelastin is derived from a soluble elastin with a molecular weight of 95000. Tropoelastin and its proposed precursor were isolated from the aortas of copper-deficient chicks. Although it is doubtful that the proposed precursor is an initial product of elastin translation, i.e., a proelastin, it is proposed to be at least a truncated form of proelastin that is converted to tropoelastin. The key to its isolation was the presence of alpha 1-antitrypsin at each step in the purification procedure. The first 11 amino acid residues at the NH2 terminal of the proposed tropoelastin precursor (GGVPGVAVPGGV) are the same as those for tropoelastin. Its amino acid composition is similar to that of tropoelastin, except for higher amounts of acidic amino acid residues. Further, the proposed precursor contains a limited number of aldehydic functions, presumably in the form of peptidyl allysine. This was taken as an indication that the proposed precursor serves as a substract for lysyl oxidase. Under the conditions used for the isolation, the precursor appeared to be in higher concentrations than tropoelastin in aorta extracts from copper-deficient chicks.  相似文献   

4.
Tropoelastin was isolated from the aortas of chicks rendered lathyritic by treatment with beta-aminopropionitrile. The soluble elastin was judged homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis and possessed an estimated molecular weight of 70000. Automated sequential analysis revealed that the N-terminal region of the chick tropoelastin is very homologous to tropoelastin isolated from copper-deficient piglets. N-terminal analysis of a trypsin digest of chick tropoelastin showed that tyrosine frequently is found adjacent to lysine residues. This positioning of tyrosine residues may be significant in terms of a possible regulatory role in elastin cross-link formation.  相似文献   

5.
This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P1, which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr. CG shows a strong preference for the charged amino acid Lys at P1 in tropoelastin, whereas Lys was not identified at P1 in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P2 and P4′. With respect to the liberation of potentially bioactive peptides from elastin, the study revealed that all three serine proteases have a similar ability to release bioactive sequences, with CG producing the highest number of these peptides. In bioactivity studies, potentially bioactive peptides that have not been investigated on their bioactivity to date, were tested. Three new bioactive GxxPG motifs were identified; GVYPG, GFGPG and GVLPG.  相似文献   

6.
Chick plasma contains inhibitor(s) against trypsin and elastase which also appear to retard the degradation of tropoelastin by arterial tissue Chick aorta extracts also contain similar inhibitors against elastase and trypsin. Both levels of the plasma inhibitor(s) and inhibitor(s) extracted from thoracic aorta increase during early stages of growth and maturation. There is a three- to four-fold increase in the levels of the inhibitor(s) in chick plasma and aorta between one to four weeks after hatching. Of particular interest are the observations that the presence of the inhibitor(s) retards the conversion of soluble elastin (tropoelastin) to smaller elastin peptides. Subsequently, it is speculated that in addition to other vital roles, such proteinase inhibitors may also act in regulating elastogenesis and elastin fiber formation.  相似文献   

7.
Recent studies have demonstrated that tropoelastin and elastin-derived peptides are chemotactic for fibroblasts and monocytes. To identify the chemotactic sites on elastin, we examined the chemotactic activity of Val-Gly-Val-Ala-Pro-Gly (VGVAPG), a repeating peptide in tropoelastin. We observed that VGVAPG was chemotactic for fibroblasts and monocytes, with optimal activity at approximately 10(-8) M, and that the chemotactic activity of VGVAPG was substantial (half or greater) relative to the maximum responses to other chemotactic factors such as platelet-derived growth factor for fibroblasts and formyl-methionyl-leucyl-phenylalanine for monocytes. The possibility that at least part of the chemotactic activity in tropoelastin and elastin peptides is contained in VGVAPG sequences was supported by the following: (a) polyclonal antibody to bovine elastin selectively blocked the fibroblast and monocyte chemotactic activity of both elastin-derived peptides and VGVAPG; (b) monocyte chemotaxis to VGVAPG was selectively blocked by preexposing the cells to elastin peptides; and (c) undifferentiated (nonelastin producing) bovine ligament fibroblasts, capable of chemotaxis to platelet-derived growth factor, did not show chemotactic responsiveness to either VGVAPG or elastin peptides until after matrix-induced differentiation and the onset of elastin synthesis. These studies suggest that small synthetic peptides may be able to reproduce the chemotactic activity associated with elastin-derived peptides and tropoelastin.  相似文献   

8.
Disruption and degradation of interstitial elastic fibers are significant characteristics of pulmonary emphysema. In order to examine the responses of elastogenic cells to the conditions mimicking degradation of interstitial pulmonary elastin, rat pulmonary fibroblast cultures were used as an in vitro model. Second passage fibroblasts were divided into two different environmental situations to represent cells adjacent to and remote from the site of elastase-digested matrix. One set of cell cultures was briefly digested with pancreatic elastase. The resultant digest was then added back incrementally to the medium of elastase-digested cell cultures and to the medium of a second set of undigested cultures. Both sets of cell cultures remained viable and metabolically active during these treatments (96 h of incubation) as judged by protein synthesis, cell number, and steady-state levels of beta-actin mRNA. However, the two sets of cultures exhibited opposite responses in elastin gene expression with addition of increasing amounts of the elastase digest. The elastase-digested cultures exhibited a 200% increase in extractable soluble elastin and a 186% increase in tropoelastin mRNA with the addition of increasing amounts of the elastase digest to the medium. Conversely, the amount of soluble elastin recovered from the undigested cultures decreased 75%, and the steady-state level of tropoelastin mRNA decreased 63%. Soluble elastin peptides generated from oxalic acid treatment of purified elastin were shown to decrease tropoelastin mRNA in undigested cell cultures in the same manner as the elastase digest. Based on these data, we propose that pulmonary fibroblast elastin gene expression can be controlled coordinately by the state of the extracellular matrix and solubilized peptides derived from that matrix. Such integrated regulation may serve to localize elastin repair mechanisms.  相似文献   

9.
Copper deficiency results in defective elastin and collagen maturation in most tissues. A close relationship also exists between these components and proteoglycans in connective tissue. In an effort to obtain information on the nature of proteoglycans in copper deficiency, the composition of glycosaminoglycans in lungs from copper-deficient (1 micrograms/g of diet) or -supplemented (25 micrograms/g diet) chicks was studied. The total glycosaminoglycan concentration in copper-deficient chick lungs did not differ from that in control chick lungs. However, variations in individual glycosaminoglycan concentrations between lungs from copper-deficient and -supplemented chicks were observed. Heparan sulfate and dermatan sulfate concentrations were lower in copper-deficient chick lungs than in controls. The glycosaminoglycans from lungs of copper-deficient chicks also had lower molecular weights than glycosaminoglycans from lungs of control birds.  相似文献   

10.
Elastin is a common insoluble protein that is abundant in marine vertebrates, and for this reason its degradation is important for the recycling of marine nitrogen. It is still unclear how marine elastin is degraded because of the limited study of marine elastases. Here, a novel protease belonging to the M23A subfamily, secreted by Pseudoalteromonas sp. CF6-2 from deep-sea sediment, was purified and characterized, and its elastolytic mechanism was studied. This protease, named pseudoalterin, has low identities (<40%) to the known M23 proteases. Pseudoalterin has a narrow specificity but high activity toward elastin. Analysis of the cleavage sites of pseudoalterin on elastin showed that pseudoalterin cleaves the glycyl bonds in hydrophobic regions and the peptide bonds Ala–Ala, Ala–Lys, and Lys–Ala involved in cross-linking. Two peptic derivatives of desmosine, desmosine-Ala-Ala and desmosine-Ala-Ala-Ala, were detected in the elastin hydrolysate, indicating that pseudoalterin can dissociate cross-linked elastin. These results reveal a new elastolytic mechanism of the M23 protease pseudoalterin, which is different from the reported mechanism where the M23 proteases only cleave glycyl bonds in elastin. Genome analysis suggests that M23 proteases may be popular in deep-sea sediments, implying their important role in elastin degradation. An elastin degradation model of pseudoalterin was proposed, based on these results and scanning electron microscopic analysis of the degradation by pseudoalterin of bovine elastin and cross-linked recombinant tropoelastin. Our results shed light on the mechanism of elastin degradation in deep-sea sediment.  相似文献   

11.
1. The preparative Edman degradation of desmosine-containing peptides permitted the isolation of peptides C-terminal to the desmosine cross-links in bovine, porcine and human aortic elastin as well as bovine ligamentum nuchae elastin. This identifies the lysines in the tropoelastin which give rise to the desmosine cross-links. 2. The sequences from bovine aortic elastin were identical with those obtained from bovine ligamentum nuchae elastin but differed from those obtained from the other species. The most striking difference involves the occurrence of phenylalanine in bovine elastin and tyrosine in porcine and human elastin C-terminal to the desmosine cross-links. 3. The sequences of the C-terminal peptides were found to fall into two distinct classes, one starting with hydrophobic residues, the other starting with alanine. It is proposed that thehydrophobic residue prevents the enzymic oxidative deamination of the adjacent lysine e-amino group and this then contributes the nitrogen to the pyridinium ring of the cross-links.  相似文献   

12.
In this review are presented the last new results of our research group dealing with the molecular structures (atomic level) of tropoelastin, elastin and elastin derived peptides studied by using essentially methods of bioinformatics (theoretical predictions and molecular modelling) linked to experimental circular dichroism spectroscopic studies. We already had characterized both the local secondary structure and some parts of the tertiary structure of the tropoelastin and elastin molecules (human, bovine...), by using either theoretical predictions (local secondary structure, linear epitopes...) and/or experimental data (optical spectroscopic methods: Raman scattering, infrared absorption, circular dichroism). Except the cross-linking regions which are in helical conformations, the whole tropoelastin structure displays a lot of beta-reverse turns which usually belong to irregular structures in proteins. These turns play a key role in other regularly structures orientation (alpha-helix, beta-strand), thus they are very important in the native protein 3D architecture. It is particularly true for human tropoelastin, because its sequence is rich in glycines and prolines, and these residues are frequently met in beta-turns (a beta-turn is made of four consecutive residues which are stabilized by an hydrogen bond). Several types of beta-turns can be defined with the dihedral angles values phi and psi of the two central residues. Thus, by using a very recent updated set of propensities for the amino acid residues to belong to given types of reverse beta-turns (extracted from a reference set of known 3-D structures of globular proteins), we have determined, (by using our home made software COUDES), for all possible tetrapeptides of the human tropoelastin sequence, the distribution and the characterization of the possible type of turns. Thus, it is shown that the locations and/or the types of these reverse beta-turns reveal a regularity and are not all random. This confirms our hypothesis that intra-molecular elasticity of tropoelastin could be explained by the possibility of transitions between conformations involving short beta-strands and beta-turns. This result is of great interest in the construction (by using molecular biology) of elastic biomaterials derived from the elastin sequence (particularly, the elastin derived peptides corresponding to the sequence exon 21--(exon 24--exon 24...). Our study permit also to predict the conformations of specific elastin derived peptides which could have interesting biological activity. Peptides resulting from the degradation of elastin, the insoluble polymer of tropoelastin and responsible for the elasticity of vertebrate tissues, can induce biological effects and notably the regulation of matrix metalloproteinases (MMP-s) activity. Recently, it was proposed that some elastin derived hexapeptides resulting from circular permutations of VGVAPG (a three fold repetition sequence in exon 24 of human tropoelastin) possess MMP-1 production and activation regulation properties. This effect depends on the presence of the tropoelastin specific membraneous receptor 67 KDa EBP (Elastin Binding Protein). Our results obtained by using both circular dichroism spectroscopy and linear predictions confirmed the hypothesis of a structure dependent mechanism with a possibly occurring type VIII beta-turn on the first four residues of the GXXPG sequence consensus which is only present among all active peptides. Thus, we have performed extensive molecular dynamics studies, in both implicit and explicit solvent, on these active and inactive elastin derived hexapeptides. Using our own analysis method of pattern recognition of the types of the beta-reverse-turns followed during the molecular dynamics trajectory, we found that active and inactive peptides effectively form two well distinct conformational groups in which active peptides preferentially adopt conformation close to type VIII GXXP (beta-reverse-turn. The structural role of the C terminal G residue could also be explained. Additional molecular simulations on (VGVAPG)2 and (VGVAPG)3 show the formation of two or three GXXP tetrapeptides adopting a structure close to type VIII beta-reverse-turn, suggesting a local conformational preference for this motif. This observation of a specific structural single and/or repeated motif is in agreement with the circular dichroism spectra of the involved (VGVAPG)1, (VGVAPG)2 and (VGVAPG)3 peptides and then it can be proposed that their biological activities have to be linear. The final aim of this type of work is to understand more about the sequence/structure/function/activity relationships of those structured peptides in order to propose specific sequences (corresponding to specific structures) for best biological activity results.  相似文献   

13.
1. Insoluble elastin has been prepared by several different methods from adult bovine and calf ligamentum nuchae. Highly purified tropoelastin has been prepared from copper-deficient porcine aorta. 2. Amino acid analyses indicated that all preparations, except that obtained from calf ligamentum nuchae by using an EDTA extraction followed by collagenase digestion (preparation E6), were typical of pure elastin having high concentrations of hydrophobic and low concentrations of hydrophilic amino acids. Preparation E6 was found to contain approx. 40% collagen. 3. The determination and composition of the carbohydrates associated with these preparations is reported. With the exception of preparation E6, the insoluble elastins contained only trace amounts of neutral sugars (0.13-0.35%, w/w) and amino sugars (0.01-0.06%, w/w). The porcine tropoelastin contained virtually no carbohydrate. 4. The results suggest that carbohydrate analyses can yield valuable information about the purity of elastin preparations.  相似文献   

14.
Abstract

Elastin is an important protein of the extracellular matrix of higher vertebrates, which confers elasticity and resilience to various tissues and organs including lungs, skin, large blood vessels and ligaments. Owing to its unique structure, extensive cross-linking and durability, it does not undergo significant turnover in healthy tissues and has a half-life of more than 70?years. Elastin is not only a structural protein, influencing the architecture and biomechanical properties of the extracellular matrix, but also plays a vital role in various physiological processes. Bioactive elastin peptides termed elastokines – in particular those of the GXXPG motif – occur as a result of proteolytic degradation of elastin and its non-cross-linked precursor tropoelastin and display several biological activities. For instance, they promote angiogenesis or stimulate cell adhesion, chemotaxis, proliferation, protease activation and apoptosis. Elastin-degrading enzymes such as matrix metalloproteinases, serine proteases and cysteine proteases slowly damage elastin over the lifetime of an organism. The destruction of elastin and the biological processes triggered by elastokines favor the development and progression of various pathological conditions including emphysema, chronic obstructive pulmonary disease, atherosclerosis, metabolic syndrome and cancer. This review gives an overview on types of human elastases and their action on human elastin, including the formation, structure and biological activities of elastokines and their role in common biological processes and severe pathological conditions.  相似文献   

15.
Degradation of elastic fibers in tissues can result in the development of disorders that include aneurysms, atherosclerosis, and loss of skin elasticity. Tropoelastin is the precursor of the cross-linked elastin and its expression is triggered by elastin-degrading factors as a response to damage. Factors like UV radiation not only increase the expression of tropoelastin but also potent metalloelastases such as macrophage elastase (MMP-12). The development of elastin-degrading diseases, moreover, is a chronic process during which elastin and tropoelastin are repeatedly exposed to attacks by MMP-12. Hence, in this work we report the in vitro susceptibility of tropoelastin and the potential of MMP-12 to generate matrikines. This work provides evidence that tropoelastin is substantially and rapidly degraded by MMP-12 even at very dilute enzyme concentrations. MMP-12 cleaves at least 86 sites in tropoelastin. Analysis of the generated peptides revealed that some small peptides contained the motif GXXPG that may enable them to bind with the elastin binding protein (EBP). Furthermore, using synthesized peptides it was confirmed that several sites in the sequence encoded by exon 24 which contains repetitive units of biologically active VGVAPG domains are susceptible to attack by MMP-12, provided that the active subsites in MMP-12 (S4 to S4′) are occupied. Such cleavage events have lead to the generation of ligands that may bind to EBP.  相似文献   

16.
All the desmosine-containing elastolytic peptides of bovine ligamentum-nuchae elastin have now been examined for amino acid sequences C-terminal to the cross-links. In addition, amino acid residues C-terminal to lysine residues in bovine tropoelastin were also examined. No tyrosine C-terminal to cross-links in bovine elastin or C-terminal to lysine in tropoelastin was detected. Apparently all the tyrosine residues C-terminal to lysine residues in pig tropoelastin are replaced with phenylalanine in bovine tropoelastin. All the data presented are consistent with the scheme proposed for the formation of desmosine and isodesmosine cross-links of elastin by Gerber & Anwar [(1975) Biochem. J. 149, 685--695].  相似文献   

17.
A number of reports point to the presence of proteoglycans and/or glycosaminoglycans within elastic fibers in normal and in pathological conditions. We present data that heparan sulphate (HS)-containing proteoglycans are associated with normal elastic fibers in human dermis and that isolated HS chains interact in vitro with recombinant tropoelastin and with peptides encoded by distinct exons of the human tropoelastin gene (EDPs). By immunocytochemistry, HS chains were identified as associated with the amorphous elastin component in the human dermis and remained associated with the residual elastin in the partially degenerated fibers of old subjects. HS appeared particularly concentrated in the mineralization front of elastic fibers in the dermis of patients affected by pseudoxanthoma elasticum (PXE). In in vitro experiments, HS induced substantial changes in the coacervation temperature and in the aggregation properties of recombinant tropoelastin and of synthetic peptides (EDPs) corresponding to sequences encoded by exons 18, 20, 24 and 30 of the human tropoelastin gene. In particular, HS modified the coacervation temperature and favoured the aggregation into ordered structures of tropoelastin molecules and of EDPs 18, 20 and 24, but not of EDP30. These data strongly indicate that HS-elastin interactions may play a role in tissue elastin fibrogenesis as well as modulating elastin stability with time and in diseases.  相似文献   

18.
19.
Many pathogenic bacteria specifically bind to components of the extracellular matrix. In this study, we report the specific association of Staphylococcus aureus with elastin, a major structural component of elastic tissue. Competition assays in which the binding of radiolabeled tropoelastin was inhibited by excess unlabeled elastin peptides, but not by other proteins, established the specificity of the interaction. Kinetic studies showed that tropoelastin binding to the bacteria was rapid and saturable. Scatchard analysis of the equilibrium binding data indicated the presence of a single class of high affinity binding sites (KD approximately 4-7 nM) with approximately 1000 sites per organism. Protease susceptibility suggested that the elastin binding moiety on S. aureus was a protein, which was confirmed by the isolation of a 25-kDa elastin-binding protein from S. aureus extracts through affinity chromatography. Using a truncated form of tropoelastin, the bacterial binding domain on elastin was mapped to a 30-kDa fragment at the amino end of the molecule. Although the precise amino acid sequence recognized by the staphylococcal elastin receptor has not been characterized, it is clearly different from the region of tropoelastin that specifies binding to mammalian elastin receptors.  相似文献   

20.
Summary Mutations in the gene coding for the ABC transporter, ABCC6, in humans cause Pseudoxanthoma elasticum, which is characterized by the deposition of aberrant elastic fibers. To investigate whether the presence of ABCC6 in tissues synthesizing elastin is required for elastin deposition and elastic fiber assembly, we have compared the steady-state levels and tissue distribution of Abcc6 and tropoelastin mRNAs during mouse embryogenesis. Whereas tropoelastin mRNA levels rose during embryogenesis and were the highest in neonatal mice, Abcc6 mRNA levels remained constantly low throughout embryogenesis. In some tissues, both Abcc6 and tropoelastin mRNA were detected. However, Abcc6 mRNA and protein were not detected in neonatal aorta and arteries, which produce large amounts of elastin indicating that the presence of Abcc6 in elastic tissues is not required for elastic fiber assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号