首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biophysical journal》2022,121(12):2312-2329
Balanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis, and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs) p21Cip1/Waf1, p27Kip1, and p57Kip2 bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signaling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular-dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.  相似文献   

2.
p21 is a member of the Cip/Kip family of cyclin-dependent kinase (CDK) inhibitors that includes p21, p27, and p57. Recent studies have suggested that Cdk2 activity may promote p21 degradation through a pathway similar to that for p27, although the mechanism by which this occurs has not been clarified. In the current report, co-expression with cyclin E and Cdk2 stabilized p21 in a manner that required the CDK-binding site of p21 and a cyclin-binding site (cy1) located in the p21 N terminus. Strikingly, however, a kinase-dead Cdk2 mutant stabilized p21 to a greater extent than did wild-type Cdk2, consistent with the notion that Cdk2 activity can destabilize p21. The ability of wild-type Cdk2 to destabilize p21 required a potential Cdk2 phosphorylation site in p21 at serine 130 and an intact cyclin-binding motif (cy2) in the p21 C terminus. Finally, p21 was phosphorylated by Cdk2 at Ser-130 in vitro, and this ability of Cdk2 to phosphorylate p21 was dependent, in large part, on the presence of cy2. These results support a model in which active Cdk2 destabilizes p21 via the cy2 cyclin-binding motif and p21 phosphorylation.  相似文献   

3.
Although several factors have been implicated in the regulation of Cdk4 activity, little is known regarding the contributions of cyclin-dependent kinase inhibitors (CKIs) in Cdk4 activation in the mid G1 phase. Using a mouse macrophage cell line (Bac1.2F5), we found that most of Cdk4 bound to p15 when cells were in a quiescent state. Following CSF-1 stimulation, Cdk4 bound to cyclin D1 and then to p21, concomitant with the dissociation of p15 from the complexes. The activation of Cdk4 correlated well with p21 binding to the complexes, and the majority of active Cdk4 complexes contained p21. During regeneration of mouse liver after partial hepatectomy, Cdk4 activity coincided precisely with ternary complex formation of cyclin D1/Cdk4/p21. Using the baculovirus expression system, we succeeded in reconstituting a capacity for Cdk4 activation in insect cells, forming an active cyclin D1/Cdk4/p21 ternary complex. Taken together, it is suggested that p21 and cyclin D1 act cooperatively as activators of Cdk4 through the release of CKIs of the INK4 family.  相似文献   

4.
The members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitory proteins (CKIs), including p57(KIP2), p27(KIP1), and p21(CIP1), block the progression of the cell cycle by binding and inhibiting cyclin/CDK complexes of the G1 phase. In addition to this well-characterized function, p57(KIP2) and p27(KIP1) have been shown to participate in an increasing number of other important cellular processes including cell fate and differentiation, cell motility and migration, and cell death/survival, both in peripheral and central nervous systems. Increasing evidence over the past few years has characterized the functions of the newest CIP/KIP member p57(KIP2) in orchestrating cell proliferation, differentiation, and migration during neurogenesis. Here, we focus our discussion on the multiple roles played by p57(KIP2) during cortical development, making comparisons to p27(KIP1) as well as the INK4 family of CKIs.  相似文献   

5.
6.
7.
p57(Kip2) and p21(Cip1/Waf1) are members of cyclin-dependent kinase (Cdk) inhibitors which play critical roles in the terminal differentiation of skeletal muscle and lung. We investigated mRNA levels of p57(Kip2) and p21(Cip1/Waf1) in skeletal muscle and lung of mice during maturation and aging using Northern hybridization. The mRNA levels of p57(Kip2) and p21(Cip1/Waf1) decreased in skeletal muscle and lung of mice during maturation and aging except that the level of p21(Cip1/Waf1) mRNA in skeletal muscle of mice showed an increase only during maturation. The decrease of the p57(Kip2) mRNA level involved neither a change of DNA methylation at the promoter region nor an alteration of the imprinting status in aged mice. The decreases of p57(Kip2) and p21(Cip1/Waf1) mRNA levels during aging suggest that the process of tissue-specific terminal differentiation may be gradually downregulated with senescence in tissues where p57(Kip2) and p21(Cip1/Waf1) play key roles in differentiation. The downregulation of p57(Kip2) and p21(Cip1/Waf1) during aging is contrary to the upregulation of Cdk inhibitors during cellular replicative senescence, indicating that aging in an organismal level is mediated by mechanisms different from replicative senescence of cultured cells.  相似文献   

8.
9.
10.
Cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin–kinase complexes, in particular, cyclin D–Cdk4/6. Recent studies extended the range of known p21Waf1/Cip1 functions. In addition to the cell-cycle control, p21Waf1/Cip1 participates in important cell processes such as differentiation, senescence, and apoptosis. The balance of p21Waf1/Cip1 functional activity appears to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1/Cip1. The review considers the structure of p21Waf1/Cip1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1/Cip1 function and on the cell.  相似文献   

11.
Although RhoA plays an important role in cell proliferation and in Ras transformation in fibroblasts and mammary epithelial cells, its role in intestinal epithelial cells (IEC) is unknown. In a previous study (Ray RM, Zimmerman BJ, McCormack SA, Patel TB, and Johnson LR. Am J Physiol Cell Physiol 276: C684-C691, 1999), we showed that polyamine depletion [dl-alpha-difluoromethylornithine (DFMO) treatment] strongly inhibits the proliferation of IEC. In this report, we examined the effect of RhoA on IEC-6 cell proliferation and whether polyamine depletion inhibits cell proliferation in the presence of constitutively active RhoA. Constitutively active RhoA and vector-transfected IEC-6 cell lines were grown in the presence or absence of DFMO, which causes polyamine depletion by inhibiting ornithine decarboxylase, the first rate-limiting step in polyamine synthesis. Constitutively active RhoA significantly increased the rate of cell proliferation. These cells also lost contact inhibition and formed conspicuous foci when they were fully confluent. Decreased p21Waf1/Cip1 expression and increased cyclin-dependent kinase (Cdk2) mRNA levels and activity accompanied the increased proliferation. The inhibition of p21Waf1/Cip1 was independent of p53. There was no activation of the Ras-Raf-MEK-ERK pathway in the RhoA-transfected cell line. Polyamine depletion totally prevented the effect of activated RhoA on IEC-6 cell proliferation, focus formation, and Cdk2 expression. The stability of mRNA and protein for Cdk2 and p21Waf1/Cip1 in V14-RhoA cells was not significantly different from that of vector-transfected cells. In conclusion, RhoA activation decreased p21Waf1/Cip1 expression and increased basal and serum-induced ornithine decarboxylase activity, Cdk2 expression, Cdk2 protein, and Cdk2 activity, leading to the stimulation of IEC proliferation and transformation. Polyamine depletion totally prevented RhoA's effect on proliferation by decreasing Cdk2 expression and activity.  相似文献   

12.
13.
Cyclin-binding motifs are essential for the function of p21CIP1.   总被引:17,自引:9,他引:8       下载免费PDF全文
The cyclin-dependent kinase (Cdk) inhibitor p21 is induced by the tumor suppressor p53 and is required for the G1-S block in cells with DNA damage. We report that there are two copies of a cyclin-binding motif in p21, Cy1 and Cy2, which interact with the cyclins independently of Cdk2. The cyclin-binding motifs of p21 are required for optimum inhibition of cyclin-Cdk kinases in vitro and for growth suppression in vivo. Peptides containing only the Cy1 or Cy2 motif partially inhibit cyclin-Cdk kinase activity in vitro and DNA replication in Xenopus egg extracts. A monoclonal antibody which recognizes the Cy1 site of p21 specifically disrupts the association of p21 with cyclin E-Cdk2 and with cyclin D1-Cdk4 in cell extracts. Taken together, these observations suggest that the cyclin-binding motif of p21 is important for kinase inhibition and for formation of p21-cyclin-Cdk complexes in the cell. Finally, we show that the cyclin-Cdk complex is partially active if associated with only the cyclin-binding motif of p21, providing an explanation for how p21 is found associated with active cyclin-Cdk complexes in vivo. The Cy sequences may be general motifs used by Cdk inhibitors or substrates to interact with the cyclin in a cyclin-Cdk complex.  相似文献   

14.
The limited regenerative capacity of the glomerular podocyte following injury underlies the development of glomerulosclerosis and progressive renal failure in a diverse range of kidney diseases. We discovered that, in the kidney, cyclin I is uniquely expressed in the glomerular podocyte, and have constructed cyclin I knock-out mice to explore the biological function of cyclin I in these cells. Cyclin I knock-out (-/-) podocytes showed an increased susceptibility to apoptosis both in vitro and in vivo. Following induction of experimental glomerulonephritis, podocyte apoptosis was increased 4-fold in the cyclin I -/- mice, which was associated with dramatically decreased renal function. Our previous data showed that the Cdk inhibitor p21(Cip1/Waf1) protects podocytes from certain apoptotic stimuli. In cultured cyclin I -/- podocytes, the level of p21(Cip1/Waf1) was lower at base line, had a shorter half-life, and declined more rapidly in response to apoptotic stimuli than in wild-type cells. Enforced expression of p21(Cip1/Waf1) reversed the susceptibility of cyclin I -/- podocytes to apoptosis. Cyclin I protects podocytes from apoptosis, and we provide preliminary data to suggest that this is mediated by stabilization of p21(Cip1/Waf1).  相似文献   

15.
p21(Cip1/Waf1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. Here, we report a novel p21(Cip1/Waf1)-interacting protein, Ciz1 (for Cip1 interacting zinc finger protein), which contains polyglutamine repeats and glutamine-rich region in the N-terminus as well as three zinc-finger motifs and one MH3 (matrin 3-homologous domain 3) in the C-terminal region. Ciz1 bound to the N-terminal, the CDK2-interacting part of p21(Cip1/Waf1), and the interaction was disrupted by the overexpression of CDK2. A region of about 150 amino acids containing the first zinc-finger motif in Ciz1 was the binding site for p21(Cip1/Waf1). When Ciz1 and p21(Cip1/Waf1) were individually overexpressed in U2-OS cells, they mostly localized in the nucleus. However, coexpression of Ciz1 induced cytoplasmic distribution of p21(Cip1/Waf1). These data indicate that Ciz1 is a unique nuclear protein that regulates the cellular localization of p21(Cip1/Waf1).  相似文献   

16.
The Cip/Kip protein family, which includes p27, p21, and p57, modulates the activity of cyclin-dependent kinases (Cdks). A domain within these proteins, termed the kinase inhibitory domain (KID), is necessary and sufficient for Cdk inhibition. The KID consists of a cyclin-binding subdomain (termed D1) and a Cdk-binding subdomain (termed D2) joined by a 22-residue linker subdomain (termed LH). Before binding the Cdks, D1 and D2 are largely unstructured and the LH subdomain exhibits nascent helical characteristics. Curiously, although the sequence of the linker subdomain is not highly conserved within the family, its nascent helical structure is conserved. In this study, we explored the role of this structural conservation in interactions with cyclin-dependent kinase 2 (Cdk2) and cyclin A. We constructed chimeric p27-KID molecules in which the p27 LH subdomain was replaced with the corresponding segments of either p21 or p57. The chimeric molecules bind and inhibit Cdk2 in a manner similar to wild-type p27-KID. However, the extent of enthalpy/entropy compensation associated with these interactions was dramatically different, indicating different extents of LH subdomain folding upon binding. Our results indicate that the different LH subdomains, despite their sequence and thermodynamic differences, play similar roles in binding and inhibiting Cdk2/cyclin A.  相似文献   

17.
p57 KIP2 is a potent tight-binding inhibitor of several G1 cyclin/cyclin-dependent kinase (Cdk) complexes, and is a negative regulator of cell proliferation. The gene encoding p57 KIP2 is located at 11p15.5, a region implicated in both sporadic cancers and Beckwith-Wiedemann syndrome (BWS). Previously we demonstrated that p57 KIP2 is imprinted and only the maternal allele is expressed in both mice and humans. We also showed mutations found in p57 KIP2 in patients with BWS that were transmitted from the patients’ carrier mothers, indicating that the expressed maternal allele was mutant and that the repressed paternal allele was normal. In the study reported here, we performed functional analysis of the two mutated p57 KIP2 genes. We showed that the nonsense mutation found in the Cdk inhibitory domain in a BWS patient rendered the protein inactive with consequent complete loss of its role as a cell cycle inhibitor and of its nuclear localization. We also showed that the mutation in the QT domain, although completely retaining its cell cycle regulatory activity, lacked nuclear localization and was thus prevented from performing its role as an active cell cycle inhibitor. Consequently, no active p57 KIP2 would have existed, which might have caused the disorders in BWS patients. Received: 7 November 1998 / Accepted: 19 December 1998  相似文献   

18.
The p53 tumor suppressor gene product plays an important role in the regulation of apoptosis. Transforming growth factor beta1 (TGF-beta1)-induced apoptosis in hepatic cells is associated with reduced expression of the retinoblastoma protein (pRb) and subsequent E2F-1-activated expression of apoptosis-related genes. In this study, we explored the potential role of p53 in TGF-beta1-induced apoptosis. HuH-7 human hepatoma cells were either synchronized in G1, S and G2/M phases, or treated with 1 nM TGF-beta1. The results indicated that greater than 90% of the TGF-beta1-treated cells were arrested in G1 phase of the cell cycle. This was associated with enhanced p53 dephosphorylation and p21(Cip1/Waf1) expression, which coincided with decreased Cdk2, Cdk4, and cyclin E expression, compared with synchronized G1 cells. In addition, p53 dephosphorylation coincided with caspase-3 activation, and translocation of p21(Cip1/Waf1) and p27(Kip1) into the cytoplasm, all of which were suppressed by caspase inhibition of TGF-beta1-induced apoptosis. Finally, phosphatase inhibition and pRb overexpression partially inhibited p53-mediated apoptosis. In conclusion, the results demonstrated that TGF-beta1-induced p53 dephosphorylation is associated with caspase-3 activation, and cytosolic translocation of p21(Cip1/Waf1) and p27(Kip1), resulting in decreased expression of Cdks and cyclins. Further, p53 appears to mediate TGF-beta1-induced apoptosis downstream of the pRb/E2F-1 pathway.  相似文献   

19.
The cyclin-dependent kinase inhibitors interact with cyclin-cdk complexes to arrest mitogen-stimulated transit through the cell cycle, but these proteins have recently been shown to have positive regulatory effects on cyclin-cdk complex activity as well. Most of the previous work in this area has focussed on the finding that overexpressed p21(Waf1/Cip1) causes growth arrest. However, mice lacking p21(Waf1/Cip1) showed normal development with no aberrancy in their cell cycles, and antisense p21(Waf1/Cip1) has only been shown to prevent cell cycle arrest, leading to the conclusion that the cyclin kinase inhibitors may not be required for cell cycle progression. We found that transfection of several lines of vascular smooth muscle cells with antisense oligodeoxynucleotide specific to p21(Waf1/Cip1) correlates with decreased cyclin D1/cdk 4, but not cyclin E/cdk 2, association, yet, unexpectedly, results in dose-dependent inhibition of platelet-derived growth factor-BB-stimulated DNA synthesis and cell proliferation. Our finding that p21(Waf1/Cip1) exhibits permissive effects on growth factor-induced vascular smooth muscle cell cycle progression, such that its presence is required for growth factor-induced proliferation, is the first such report and opens up a fertile area of research relevant to diseases involving vascular cell proliferation.  相似文献   

20.
Hepatitis C virus nonstructural protein, NS5A, is a phosphoprotein produced from the processing of the viral polyprotein precursor. NS5A associates with several cellular proteins in mammalian cells, and the biological consequences of this interaction are currently unknown. To this end, five stable NS5A-expressing murine and human cell lines were established. Tetracycline-regulated NIH3T3 cells and rat liver epithelial cells as well as the constitutive, NS5A-expressing, human Chang liver, HeLa, and NIH3T3 cells all exhibited cell growth retardation compared with the control cells. Cell cycle analysis by flow cytometry indicated that the NS5A-expressing human epitheloid tumor cells had a reduced S phase and an increase in the G(2)/M phase, which could be explained by a p53-dependent induction of p21(Waf1/Cip1) protein and mRNA levels. NS5A interacts with Cdk1 in vivo and in vitro, and a significant portion of the p21(Waf1/Cip1) was found to be in a complex with Cdk2 in the NS5A-expressing human hepatic cell line. Cdk1 and cyclin B1 proteins were also reduced in human Chang liver cells consistent with the increase in G(2)/M phase. Our results suggest that the NS5A protein causes growth inhibition and cell cycle perturbations by targeting the Cdk1/2-cyclin complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号