首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to produce somatic hybrids between tetraploid (2n=4x=32) M. sativa and diploid (2n=2x=16) M. ?falcata and analyse their genomic structure. Protoplasts from genotypes selected for regeneration ability from the cultivar Rangelander of M. sativa and Wisfal-1 of M. falcata were electrofused. Seven somatic hybrid calli were produced and one of them regenerated plants. The hybrid nature of these plants and their genetic composition were assessed with morphological, cytological, and molecular analyses. The resulting plants were hyper-aneuploid (2n=33) and contained one extra long chromosome, indicating that a translocation had taken place. The presence of both types of parental sequences in the RAPDs analysis confirmed the true hybrid nature of the plants. Rearrangements within the parental genomes and the presence of somaclonal variation among hybrid plants were observed through an RFLP analysis of the nucleolar organizing region (NOR). The possible causes for the gross genomic alterations, and the suitability of this method for transferring useful agronomic traits from wild species to cultivated alfalfa, are discussed.  相似文献   

2.
Non-embryogenic protoplasts of Medicago rugosa and M. scutellata were electro-fused with iodoacetic acid-treated protoplasts of M. sativa (alfalfa). Putative somatic hybrid callus were obtained and some plants regenerated from both combinations. Hybridity of regenerants was confirmed by morphology, molecular means and cytological observations. Parental specific bands were recognized in somatic hybrids by Southern analysis. The somatic hybrids were perennial and their morphology was similar to M. sativa. Cytological observations were carried out on the somatic hybrids, their vegetative clones and self-pollinated offspring. Original somatic hybrids were aneuploids (2n=31–59), but during vegetative proliferation, their chromosome numbers reduced to 32. Those clones of hybrids formed seeds from M. sativa (+) M. rugosa by self-crossing. Chromosomal rearrangements within the parental genomes were observed in vegetative clones of hybrids and their S1 offspring by Genomic in situ Hybridization (GISH). Some of S1 offspring from M. sativa (+) M. rugosa showed better spring growth than parental M. sativa and tend to be tolerant to Alfalfa weevil. It was considered that these traits were introduced from the genome transferring M.␣rugosa chromosome to M. sativa. The cell fusion may still have a potential in transferring alien chromosomes in order to increase the genetic variation for crop breeding.  相似文献   

3.
LUPOTTO  E. 《Annals of botany》1986,57(1):19-24
Embryogenic cultures of lucerne (Medicago sativa L.) cv. Robothave been established and propagated on medium containing yeastextract. These cultures consisted of unorganized callus tissuebearing embryogenic centres which increased in size during subculture,yielding new regenerated somatic embryos at the end of each20-d subculture. A development in the propagation of the embryogenic cultureswas the establishment of single embryo culture in hormone-freemedium where, in selected cases, the process of recurrent somaticembryogenesis (RSE) took place on the hypocotyl of explantedembryos. The process was independent of supporting callus tissueand occurred on simple defined medium. Single embryos underwenteither plantlet development or continued RSE on the hypocotyl.One third of the regenerated plantlets showed RSE after thetwo to three trifoliate leaf stage. In these cases shoot developmentstopped and only somatic embryo production took place. In vitrocloning of regenerated plantlets allowed us to reproduce eachparticular genotype before transplantation into soil. Lucerne (alfalfa), Medicago sativa L., somatic embryogenesis, single embryo culture  相似文献   

4.
Globular-stage somatic embryos were isolated by vortexing friable, embryogenic callus of oat (Avena sativa L.) followed by fractionation based on size. Somatic embryos were most frequently found in the 300–380 m size fraction. Friable, embryogenic callus was reinitiated from 55% of isolated somatic embryos. Fertile plants were regenerated from 22% of isolated somatic embryos. Reinitiation of callus from somatic embryos and growth of friable, embryogenic callus was inhibited by the selective agents G418 and methotrexate. These results suggest that somatic embryos isolated from friable, embryogenic callus of oat may be useful totipotent targets for particle acceleration-mediated transformation.  相似文献   

5.
Direct differentiation of shoot buds in Coffea dewevrei was evident from the seedling shoots with collar region and also from collar region end of hypocotyl segments in presence of 40 μM AgNO3, 8.88 μM of BA and 2.85 μM of IAA. Apart from this, shoot end of hypocotyl explants mainly supported yellow friable callus or somatic embryos. Subsequent transfer to the same medium induced secondary somatic embryogenesis. The collar region of the hypocotyl explants not only showed direct organogenesis by producing 1–3 shoots per explant and also able to produce globular somatic embryos and embryogenic yellow friable callus. Similarly direct somatic embryogenesis along with yellow friable embryogenic callus formation on 1/2 strength MS medium comprising 1.47 μM IAA, 2.22 μM BA and 40 μM AgNO3 was noticed from cut portion of in vitro leaf and stalk of regenerated plants. The microshoots rooted well upon subculturing onto the same medium in 6 weeks and showed 60 % survival in green house and resumed growth upon hardening.  相似文献   

6.
Effects of abscisic acid (ABA) and methyl jasmonate (MeJA) on ethylene production, ACC oxidase (ACO) activity, and content of 1-aminocyclopropane-1-carboxylic acid (ACC) during indirect somatic embryogenesis (SE) of Medicago sativa L. were studied. ABA and MeJA, at 50 μM, were applied during the induction, proliferation, or differentiation phase. ABA decreased ethylene production at the beginning of callus and SE induction and during the differentiation of somatic embryos. The hormone inhibited ACO activity in explants with overgrowing callus during the first two weeks of induction, in embryogenic suspension and also in differentiating embryos. The ACC content was reduced by ABA in callus at the end of SE induction, in embryogenic suspension and in globular embryos, but elevated in cotyledonary embryos. MeJA had no significant effect on ethylene production during M. sativa SE, despite the fact, that it inhibited ACO activity during the first two weeks of induction and in torpedo and cotyledonary embryos. The ACC content was increased by MeJA in 14-day-old callus and embryogenic suspension but was inhibited in globular embryos. Both ABA and MeJA seem to be involved in the regulation of ethylene biosynthesis during distinct phases of SE in M. sativa. It might be considered that exogenous ABA, more probably than MeJA, exerts its inhibitory effect on M. sativa somatic embryo formation by modifying ethylene production.  相似文献   

7.
Seventy-six cultivars of alfalfa (Medicago sativa L., M. falcata L. and M. varia Martyn) were tested in vitro for their capacity to produce callus and somatic embryos. A three-step media protocol was used to survey the response of the cotyledons and hypocotyl of each genotype while the epicotyl region was conserved in order to recover highly responding genotypes. The best regeneration response was observed in creepingrooted cultivars which contained a strong genetic contribution of two landrace germplasm sources, defined as M. falcata and Ladak, in their ancestry. The callus and embryogenesis responses showed a high degree of variation both between cultivars and among the plants of many of the 76 cultivars tested. A higher number of plants produced somatic embryos in the high regenerating cultivars compared to the low regenerating cultivars regardless of the media protocol or explant.  相似文献   

8.
The relative importance of genotype and explant, and their interactionsfor in vitro plant regeneration via both organogenesis and somaticembryogenesis in Solanum melongena (eggplant) has been studied.Hypocotyl, cotyledon and leaf explants of four commerciallygrown Indian cultivars, Pusa Purple Long, Long White Cluster,Pusa Kranti, and Pusa Purple Cluster were used in the study.A combination of benzyladen-ine (11.1 µM) and indoleaceticacid (2.9 µM) was found to be optimum for shoot regeneration.Naphthalene acetic acid induced embryogenesis in all the threeexplants; 32.2µM was optimum for hypocotyl explants while10.7µM yielded maximum number of somatic embryos fromcotyledon and leaf explants. Genotype, explant and genotype-explantinteraction had highly significant effects on both organogenesisand somatic embryogenesis with genotype exerting maximum effecton both these processes. Pusa Purple Long was found to be themost responsive genotype for regeneration of both adventitiousshoots and somatic embryos among the cultivars. Among the explants,hypocotyls yielded the maximum number of adventitious shootsfollowed by cotyledons and leaves. The embryogenic responseof leaves and cotyledons was, however, significantly higherthan that of hypocotyl explants. Significant differences formorphogenetic potential were also observed within a single explant(hypocotyl). There was a basipetal gradient for organogenesis(i.e. decrease in number of shoots from base to apex) whilethe terminal hypocotyl segments showed better embryogenic potentialthan the median segments. Key words: Solarium melongena, organogenesis, somatic embryogenesis, genotype, explant, position effect  相似文献   

9.
Three somatic hybrid plants produced by protoplast fusion between Medicago sativa and each of the three species Medicago coerulea, Medicago falcata and Medicago arborea have been analysed for the composition of their mitochondrial DNA. Restriction fragment length polymorphism (RFLP) analysis of mitochondrial genes in somatic hybrids and their parental lines showed various degrees of rearrangement. The M. sativa+M. coerulea hybrid retained all of the M. coerulea-specific bands but lost all the major M. sativa- specific bands. The M. sativa+M. falcata hybrid showed only M. sativa-specific bands together with non-parental bands, and the M. sativa+M. arborea hybrid showed a partial incorporation of bands from both parents together with non-parental bands. The three different outcomes were attributed mainly to differences in the genetic distance between the parents of each hybrid. Analysis of the sexual progeny of the M. sativa+M. coerulea hybrid showed that a residual mitochondrial DNA subunit of M. sativa was retained in the hybrid cytoplasm. This subunit was amplified and inherited in a mutually exclusive, allelic-like fashion with its M. coerulea homologous counterpart in the sexual progeny of the hybrid. Possible mechanisms for the partitioning of mitochondrial DNA in the generative lineage of the somatic hybrids are discussed in relation to the creation of new nucleus-cytoplasm assortments otherwise impossible to obtain by a sexual cross in Medicago. Received: 5 January 2001 / Accepted: 23 March 2001  相似文献   

10.
Hypocotyl segments ofEleutherococcus senticosuscultured on Murashigeand Skoog's (MS) medium with 4.5 µM2,4-D produced somaticembryos directly from the surface of explants without interveningcallus formation. When these somatic embryos were subculturedto the same MS medium with 4.5 µM2,4-D, friable embryogeniccalli were formed mainly from radicle tips of somatic embryos,but at a low frequency (5%). Selected embryogenic calli weremaintained on MS agar or liquid medium with 4.5 µM2,4-D.To induce somatic embryo development, embryogenic calli andcell clumps were transferred to MS medium lacking 2,4-D. Thefrequency of somatic embryo formation differed between culturetypes with 1570 embryos formed per Petri dish from callus cultureand 5514 embryos formed per flask from cell suspension cultures.Somatic embryos formed on agar medium had larger cotyledonsthan those of embryos formed in liquid medium. GA3treatmentwas necessary to induce germination from somatic embryos. Therate of plant conversion was 97% in somatic embryos from callusculture and 76% in embryos from liquid culture. Regeneratedplantlets were successfully acclimatized in the glasshouse.Copyright1999 Annals of Botany Company Eleutherococcus senticosus, micro propagation, somatic embryogenesis.  相似文献   

11.
A procedure for inducing somatic embryos in shoot apex explants (2 mm) excised from shoot proliferation cultures established from adult oak trees (Quercus robur) was investigated. Embryogenesis was induced in shoot tip as well as leaf explants in three out of the five genotypes evaluated. Somatic embryos were formed by culture in induction medium supplemented with 21.48 μM naphthalene acetic acid and 2.22 μM benzyladenine for 8 weeks, and successive transfer of explants to expression media with a low concentration of growth regulators and without them. Both types of explants formed callus tissue from which somatic embryos developed, indicating indirect embryogenesis. Although the embryogenic frequencies were lower than 12%, it did not prevent the establishment of clonal embryogenic lines maintained by repetitive embryogenesis. Histological study confirmed an indirect somatic embryogenesis process from shoot tip explants, in which leaf primordia and the corresponding axial zones were involved in generating callus, whereas the apical meristem itself did not proliferate. The origin of embryogenic cells appeared to be associated with dedifferentiation of certain parenchymal cells in callus regions after transfer of explants to expression media without auxin. Division of embryogenic cells gave rise to proembryo aggregates of unicellular origin, although a multicellular origin from bulging embryogenic areas would also seem possible. Further development led to the formation of cotyledonary-stage somatic embryos and nodular embryogenic structures that may be considered as anomalous embryos with no clear bipolarity. Inducement of somatic embryos from explants isolated from shoot cultures ensures plant material all year round, thus providing a significant advantage over the use of leaf explants from field-grown trees.  相似文献   

12.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

13.
Somatic embryos were induced in lettuce cotyledons culturedon Murashige and Skoog's (MS) medium containing either 2 mgl–1 6-benzylaminopurine (BA) and 0.2 mg l–1 naphthaleneaceticacid (NAA) or 0.2 mg l–1 BA and 2 mg l–1 NAA. Bothcombinations induced a frequency of over 70%. The explants culturedonly in the presence of 2,4-dichlorphenoxyacetic acid (2,4-D)did not produce somatic embryos. The development of the embryoidswas studied histologically and by scanning electron microscopy.Peroxidase activity was assayed and the isoenzyme pattern ofcalluses was determined by polyacrylamide gel electrophoresis.Callus from an embryogenic line showed a much higher peroxidaseactivity than that from a non-embryogenic line, one extra peroxidaseisozyme band being present and typical of the embryogenic callus.No qualitative differences were detectable between the embryogeniccalluses. Lactuca sativa L, lettuce, somatic embryogenesis, peroxidases, isoenzymes  相似文献   

14.
Protoplasts from cell suspensions of young-embryo-derived calli, which were nonregenerable for long-term subculture and protoplasts from embryogenic calli with the regeneration capacity of 75% of the same wheat Jinan 177, were mixed as recipient. Protoplasts from embryogenic calli of Avena sativa (with the regeneration capacity of less than 10%) irradiated with UV at an intensity of 300 μW/cm2 for 30 s, 1 min, 2 min, 3 min, 5 min were used as the donor. Protoplasts of the recipient and the donor were fused by PEG method. Many calli and normal green plants were regenerated at high frequency, and were verified as somatic hybrids by chromosome counting, isozyme, 5S rDNA spacer sequence analysis and GISH (genomic in situ hybridization). Fusion combination between protoplasts either from the cell suspensions or from the calli and UV-treated Avena sativa protoplasts could not regenerate green plants.  相似文献   

15.
The objective of this study was to characterize the histodifferentiation of somatic embryogenesis obtained from leaf explants of C. arabica. Therefore, we histologically analyzed the respective stages of the process: leaf segments at 0, 4, 7, 15 and 30 days of cultivation, Type 1 primary calli (primary calli with embryogenic competence) and 2 (primary calli with no embryogenic competence), embryogenic calli, globular, torpedo and cotyledonary embryos, and mature zygotic embryos. Callus formation occurred after seven days of culture, with successive divisions of procambium cell. In this cultivation phase, it was found that Type 1 primary calli are basically formed by parenchymal cells with reduced intercellular spacing, whereas Type 2 primary calli are predominantly composed of parenchymal cells with ample intercellular spaces and embryogenic calli composed entirely of meristematic cells. After 330 days, it was evident from the differentiation of somatic embryogenesis that there was formation of globular somatic embryos, consisting of a characteristic protoderm surrounding the fundamental meristem. With the maturation of these propagules after 360 days, torpedo-stage somatic embryos arose, in which tissue polarization and early differentiation of procambial strands were verified. After 390 days, cotyledonary somatic embryos were obtained, where the onset of vessel elements differentiation was verified, a characteristic also observed in mature zygotic embryos. We concluded that somatic embryogenesis obtained from C. arabica leaves initiates from procambium cell divisions that, in the course of cultivation, produce mature somatic embryos suitable for regenerating whole plants.  相似文献   

16.
Summary Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.Abbreviations LSEA low somatic embryogenesis ability - HSEA high somatic embryogenesis ability - NAA 1-naphthaleneacetic acid  相似文献   

17.
Nineteen accessions of diploid Medicago sativa L. belonging to the four subspecies sativa, caerula, falcata and xvaria were screened for their ability to produce somatic embryos on hypocotyl-derived callus. Two medium protocols were used in this study, a three-step sequence with exposure of the callus cultures to a high 2,4-D concentration and a two-step sequence without exposure to a high 2,4-D concentration. Considerable variation for callus proliferation was observed. In general, the diploid M. sativa accessions showed poor regenerability and it was not possible to correlate high regeneration frequencies with a particular germplasm source. It was, however, possible to identify regenerable genotypes in all four subspecies. One falcata accession produced somatic embryos on the callus induction media at high frequencies. This response was also obtained with a few genotypes from one xvaria accession. All regenerable plants were maintained as shoot cultures and were able to form somatic embryos on petiole-derived calli.Abbreviations BA 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - 2iP iso-pentyladenine - NAA -naphthaleneacetic acid Contribution No. 772 Ottawa Research Station  相似文献   

18.
Transmission of organelle genomes in citrus somatic hybrids   总被引:3,自引:0,他引:3  
Restriction fragment length polymorphisms (RFLPs), were used to analyze the organelle composition of two-year-old trees, recovered from two different experiments: protoplasts from embryogenic cell suspensions of `Succari' sweet orange (C. sinensis L. Osbeck) were fused with leaf protoplasts of Citropsis gilletiana Swingle & M. Kell or to leaf protoplasts of Atalantia ceylanica(Arn.) Oliv. The somatic hybrids of both fusion combinations had the mitochondrial genome from the embryogenic partner. In some somatic hybrids, non-parental fragments were observed among the mitochondrial patterns. Somatic hybrids between `Succari' + Atalantia had plastid DNA from the embryogenic parent, while the somatic hybrids of `Succari' + Citropsis all had both parental chloroplast genomes. The relative abundance of organelle DNAs in the donor embryogenic and leaf cells may explain the consistent transmission of the embryogenic parent mitochondrial DNA and the inheritance of the chloroplast genome from either parent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Somatic embryogenesis from stem and leaf explants of Quercus robur L.   总被引:2,自引:0,他引:2  
Internodal and leaf segments from pedunculate oak (Quercus robur L.) seedlings were used as explant source to induce somatic embryogenesis. Auxin treatment influenced embryogenic response, which only occurred in explants initially cultured on media containing 4 mg/l naphthaleneacetic acid (NAA) and different benzyladenine (BA) concentrations. After 6 weeks of culture on induction medium, the explants were transferred to medium supplemented with 0.1 mg/l BA and 0.1 mg/l NAA, and 4 weeks later, they were subcultured in a growth-regulator-free medium, in which somatic embryos arose through indirect regeneration on the surface of a nodular callus. Somatic embryos were induced in explants of two out of four seedling provenances. The induction frequency ranged from 16% in leaf explants to 4% in internodal explants. Somatic embryos developed two cotyledons, which were translucent or opaque-white in appearance, but anomalous morphologies were also observed. Different embryogenic lines were established and maintained by repetitive embryogenesis in multiplication medium containing 0.1 mg/l BA plus 0.05 mg/l NAA. These results indicate that tissues from explants other than Q. robur zygotic embryos are able to produce embryogenic cultures. Received: 14 July 1998 / Revision received: 2 November 1998 / Accepted: 6 November 1998  相似文献   

20.
Long-term (1 yr), soft, embryogenic callus tissue cultures were established from excised immature embryos of a commercial cultivar of hybrid maize (Zea mays L.). Plant regeneration occurred by the formation of somatic embryos, and the regenerated plants were morphologically normal with 2n = 20 chromosomes. Such cultures may be useful for the isolation of mutants and the establishment of embryogenic cell suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号