首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In tropical forest ecosystems, a paradoxical relationship is commonly observed between massive biomass production and low soil fertility (low pH). The loss and deficiency of soil phosphorus (P) and bases generally constrain biomass production; however, high productivity on nutrient-deficient soils of Bornean tropical forests is hypothesized to be maintained by plant and microorganism adaptation to an acidic soil environment. Proton budgets in the plant–soil system indicated that plants and microorganisms promote acidification to acquire bases, even in highly acidic tropical soils. The nitric and organic acids they produce contribute to the mobilization of basic cations and their uptake by plants. In response to soil P deficiency and the recalcitrance of lignin-rich organic matter, specific trees and fungi can release organic acids and enzymes for nutrient acquisition. Organic acids exuded by roots and rhizosphere microorganisms can promote the solubilization of P bonded to aluminum and iron oxides and its uptake by plants from P-poor soils. Lignin degradation, a rate-limiting step in organic matter decomposition, is specifically enhanced in acidic organic layers by lignin peroxidase, produced by white-rot fungi, which may solubilize recalcitrant lignin and release soluble aromatic substances into the soil solution. This dissolved organic matter functions in the transport of nitrogen, P, and basic cations in acidic soils without increasing leaching loss. In Bornean tropical forests, soil acidification is promoted by plants and microorganisms as a nutrient acquisition strategy, while plant roots and fungi can develop rhizosphere and enzymatic processes that promote tolerance of low pH.  相似文献   

2.
Scullion  J.  Eason  W.R.  Scott  E.P. 《Plant and Soil》1998,204(2):243-254
The effectivity of arbuscular mycorrhizal spores in promoting growth of Allium ameloprasum L. cv. Musselburgh and Trifolium repens L. cv. Menna was tested for inocula from three soil series under long term organic or intensive, conventional grass and grass-arable rotations. For two soil series, Allium responses to inocula from soils recently converted to organic fanning were also assessed. Finally, Trifolium root fragments were used to inoculate Allium so as to evaluate responses to this inoculation procedure. Plants were sown into previously sterilised, matched soils from organic farms with no nutrient input. Mycorrhizal treatments generally increased growth for Allium. However, for Trifolium, infection decreased growth in the most fertile soil and gave an increase only in the least fertile. In the least fertile soil, inocula from organic farms were more effective than those from conventional farms. For Trifolium (all soils) and for Allium (least fertile soil), there was evidence of more efficient uptake of phosphorus in plants inoculated with spores from organic farms. The pattern of Allium response to inoculation with spores from conventional, conversion and organic sources was not consistent between soil type, but there was evidence of lower root infection for conversion compared with organic inocula and of a trend towards higher infectivity as the time period under organic management increased. Inoculating Allium with AMF root fragments produced a plant response similar to that obtained when spores were used, confirming that spore viability was not the sole factor influencing AMF effectivity in earlier experiments. Intensive farming practices may reduce the effectiveness of indigenous arbuscular mycorrhizal populations, particularly where fertiliser inputs are high and inherent fertility is low. This could have practical implications where high input farms are converted to organic management.  相似文献   

3.
The availability of phosphorus (P) can limit net primary production (NPP) in tropical rainforests growing on highly weathered soils. Although it is well known that plant roots release organic acids to acquire P from P-deficient soils, the importance of organic acid exudation in P-limited tropical rainforests has rarely been verified. Study sites were located in two tropical montane rainforests (a P-deficient older soil and a P-rich younger soil) and a tropical lowland rainforest on Mt. Kinabalu, Borneo to analyze environmental control of organic acid exudation with respect to soil P availability, tree genus, and NPP. We quantified root exudation of oxalic, citric, and malic acids using in situ methods in which live fine roots were placed in syringes containing nutrient solution. Exudation rates of organic acids were greatest in the P-deficient soil in the tropical montane rainforest. The carbon (C) fluxes of organic acid exudation in the P-deficient soil (0.7?mol?C?m?2?month?1) represented 16.6% of the aboveground NPP, which was greater than those in the P-rich soil (3.1%) and in the lowland rainforest (4.7%), which exhibited higher NPP. The exudation rates of organic acids increased with increasing root surface area and tip number. A shift in vegetation composition toward dominance by tree species exhibiting a larger root surface area might contribute to the higher organic acid exudation observed in P-deficient soil. Our results quantitatively showed that tree roots can release greater quantities of organic acids in response to P deficiency in tropical rainforests.  相似文献   

4.
Elevated CO2 alters belowground exoenzyme activities in tussock tundra   总被引:9,自引:0,他引:9  
Moorhead  Daryl L.  Linkins  A.E. 《Plant and Soil》1997,189(2):321-329
A three-year exposure to a CO2 concentration of 680 mol mol-1 altered the enzymic characteristics of root surfaces, associated ectomycorrhizae, and in soils surrounding roots in a tussock tundra ecosystem of north Alaska, USA. At elevated CO2, phosphatase activity was higher on Eriophorum vaginatum root surfaces, ectomycorrhizal rhizomorphs and mantles associated with Betula nana roots, and in Oe and Oi soil horizons associated with plant roots. Also, endocellulase and exocellulase activities at elevated CO2 were higher in ectomycorrhizal rhizomorphs and lower in Oe and Oi soil horizons associated with roots. These results suggest that arctic plants respond to raised CO2 by increasing activities associated with nutrient acquisition, e.g. higher phosphatase activities on surfaces of roots and ectomycorrhizae, and greater cellulase activity in ectomycorrhizae. Changes in enzyme activities of surrounding soils are consistent with an increase in carbon exudation from plant roots, which would be expected to inhibit cellulase activities and stimulate phosphatase activities of soil microflora. These data were used to modify existing simulation models describing tussock phosphatase activities and litter decay. Model projections suggest that observed increases in phosphatase activities at 680 mol mol-1 CO2 could augment total annual phosphorus release within tussocks by more than 40%, at present levels of root and ectomycorrhizae biomass. This includes a nearly three-fold increase in potential phosphatase activity of E. vaginatum roots, per unit of surface area. Observed reductions in cellulase activities could diminish cellulose turnover by 45% in soils within rooting zones, which could substantially increase mineral nitrogen availability in soils due to lowered microbial immobilization.  相似文献   

5.
Heinonsalo  J.  Hurme  K.-R.  Sen  R. 《Plant and Soil》2004,259(1-2):111-121
In northern boreal forests, podzolic soils prevail that comprise of a distinct upper organic humus/mor (O) horizon that is supported by underlying eluvial (E) and illuvial (B) mineral horizons. The dominant tree species, Scots pine (Pinus sylvestris L.), is known to be highly dependent on root symbiosis with ectomycorrhizal fungi that develop in constituent podzol horizons for growth in these nutrient limited soils. The aim of this microcosm-based study was a quantification of photosynthetically fixed 14C allocation, following standard pulse-feeding of 7-month-old Scots pine seedling shoots, to respective root and mycorrhizosphere compartments that developed in the reconstructed podzol (O, E and B) profile. Biomass of roots and mycorrhizas decreased with increasing soil depth but no soil origin, control forest vs. clear-cut area, related differences were observed. Similarly, no major soil origin- or podzol horizon-related differences in categorised ectomycorrhizal morphotypes and number of mycorrhizas, in relation to pooled root and mycorrhiza biomass, were detected. However, the total recovery of 14C-label was significantly higher in clear-cut soil microcosms compared to control counterparts. A significant finding was equivalent 14C-carbon allocation to roots and ectomycorrhizas in all three major, organic and mineral, podzol profile horizons studied. These carbon allocation data provide additional support for direct (or indirect) roles of roots and symbiotic mycorrhizal fungi in mineral weathering and biodegradation of organic ligands that are central for plant acquisition of growth limiting nutrients and the podzolization process in boreal forest ecosystems.  相似文献   

6.
Summary The importance of increased root phosphate (P) uptake kinetics, root proliferation and local increases of soil solution P (P1) for P acquisition from fertile soil microsites was explored with a simulation model and calculated uptake was compared with experimental data. Based on the partitioning of added P in microsites to P1 and P adsorbed on soil particles and the results of a dual-isotope-labeling experiment (Caldwell et al. 1991a), acquisition of P from the fertile microsites was some 20 X that of uptake from an equal volume of soil which received only water. Simulations were in general agreement and also showed that elevation of root P uptake kinetics could contribute more to the increased acquisition than did root proliferation under these circumstances. Although increased physiological uptake capacity for P has generally been considered to be of little benefit because of diffusion limitation, in patchy soil environments selective elevation of P uptake kinetics in fertile microsites may be of considerable benefit. These tests were conducted in calcareous soil which releases much less P into the soil solution than do many other soils. In many noncalcareous soils the benefits of selective elevation of root uptake kinetics would likely be greater.  相似文献   

7.
Dissolved organic matter (DOM) contributes to organic carbon either stored in mineral soil horizons or exported to the hydrosphere. However, the main controls of DOM dynamics are still under debate. We studied fresh leaf litter and more decomposed organic material as the main sources of DOM exported from the forest floor of a mixed beech/oak forest in Germany. In the field we doubled and excluded aboveground litter input and doubled the input of throughfall. From 1999 to 2005 we measured concentrations and fluxes of dissolved organic C and N (DOC, DON) beneath the Oi and Oe/Oa horizon. DOM composition was traced by UV and fluorescence spectroscopy. In selected DOM samples we analyzed the concentrations of phenols, pentoses and hexoses, and lignin-derived phenols by CuO oxidation. DOC and DON concentrations and fluxes almost doubled instantaneously in both horizons of the forest floor by doubling the litter input and DOC concentrations averaged 82 mg C l−1 in the Oe/Oa horizon. Properties of DOM did not suggest a change of the main DOM source towards fresh litter. In turn, increasing ratios of hexoses to pentoses and a larger content of lignin-derived phenols in the Oe/Oa horizon of the Double litter plots in comparison to the Control plots indicated a priming effect: Addition of fresh litter stimulated microbial activity resulting in increased microbial production of DOM from organic material already stored in Oe/Oa horizons. Exclusion of litter input resulted in an immediate decrease in DOC concentrations and fluxes in the thin Oi horizon. In the Oe/Oa horizon DOC concentrations started to decline in the third year and were significantly smaller than those in the Control after 5 years. Properties of DOM indicated an increased proportion of microbially and throughfall derived compounds after exclusion of litter inputs. Dissolved organic N did not decrease upon litter exclusion. We assume a microbial transformation of mineral N from throughfall and N mineralization to DON. Increased amounts of throughfall resulted in almost equivalently increased DOC fluxes in the Oe/Oa horizon. However, long-term additional throughfall inputs resulted in significantly declining DOC concentrations over time. We conclude that DOM leaving the forest floor derives mainly from decomposed organic material stored in Oe/Oa horizons. Leaching of organic matter from fresh litter is of less importance. Observed effects of litter manipulations strongly depend on time and the stocks of organic matter in forest floor horizons. Long-term experiments are particularly necessary in soils/horizons with large stocks of organic matter and in studies focusing on effects of declined substrate availability. The expected increased primary production upon climate change with subsequently enhanced litter input may result in an increased production of DOM from organic soil horizons.  相似文献   

8.
Leuschner  Christoph  Hertel  Dietrich  Schmid  Iris  Koch  Oliver  Muhs  Annette  Hölscher  Dirk 《Plant and Soil》2004,258(1):43-56
Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year–1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m–2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m–2) was found in the driest stand with 520 mm year–1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica.  相似文献   

9.
Caustis blakei produces an intriguing morphological adaptation by inducing dauciform roots in response to phosphorus (P) deficiency. We tested the hypothesis that these hairy, swollen lateral roots play a similar role to cluster roots in the exudation of organic chelators and ectoenzymes known to aid the chemical mobilization of sparingly available soil nutrients, such as P. Dauciform-root development and exudate composition (carboxylates and acid phosphatase activity) were analysed in C. blakei plants grown in nutrient solution under P-starved conditions. The distribution of dauciform roots in the field was determined in relation to soil profile depth and matrix. The percentage of dauciform roots of the entire root mass was greatest at the lowest P concentration ([P]) in solution, and was suppressed with increasing solution [P], while in the field dauciform roots were predominantely located in the upper soil horizons, and decreased with increasing soil depth. Citrate was the major carboxylate released in an exudative burst from mature dauciform roots, which also produced elevated levels of acid phosphatase activity. Malonate was the dominant internal carboxylate present, with the highest concentration in young dauciform roots. The high concentration of carboxylates and phosphatases released from dauciform roots, combined with their prolific distribution in the organic surface layer of nutrient-impoverished soils, provides an ecophysiological advantage for enhancing nutrient acquisition.  相似文献   

10.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

11.
Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.  相似文献   

12.
In many tropical and volcanic soils, phosphorus (P) availability is strongly influenced by geochemical sorption, which binds P to soil minerals. The aim of this study was to determine whether biological demand or soil sorption strength was the primary control over phosphate availability and retention in a wet tropical soil with high sorption capacity and low P availability. We added 32PO4 to soil from the upper two horizons and assessed the ability of soil microbes to immobilize the added phosphate in the presence of strong sorption. We added phosphate at two concentrations, one representing background turnover that adds low concentrations of P to the soil solution, and the other representing nutrient pulses that can add fairly high fluxes of P to the soil solution. Sorption and microbial immobilization were rapid for both concentrations, consuming most added P within 30 min. Thus, little P remained in the soil solution or extractable pools, which are considered more available to plants. Although soil sorption strength was almost identical for the two horizons, immobilization of tracer P was approximately three times greater in the upper horizon, where most microbial activity was located. This result suggests that microbial demand controlled how P was partitioned into biological versus geochemical sinks. Further evidence for microbial control is suggested by the movement of tracer P from the sorbed pool into the microbial pool when demand was stimulated by the addition of carbon (C). We also explored how increased nitrogen (N) and P availability changed P dynamics in this nutrient poor soil. In contrast to the unfertilized soil, long-term N and P fertilization substantially reduced biological control over inorganic P. P fertilization saturated the soils, overwhelming biological P demand, whereas N fertilization appeared to increase available P through reduced P sorption. Where biological demand for P is high and P becomes available in the soil solution, microbes may play an important role in controlling P partitioning into biological versus geochemical sinks even in soils that have high sorption capacity.  相似文献   

13.
It has been proposed that fertile soils reduce the incidence of gall-forming insect (GFI) species in plant communities. This is known as the soil fertility hypothesis. The main objective of this study was to analyze the spatial distribution of GFI species under different habitats in a tropical dry forest at the Chamela-Cuixmala Biosphere Reserve, Mexico. Eight habitats which differ in soil type, topography, nutrient availability and vegetation were chosen. We found that 38 GFI species specialize on their host plant species. GFI species richness was negatively correlated with phosphorous and nitrogen availability. Using phosphorous as an indicator of soil fertility, we found low frequency and density of GFI on fertile soils. Our study indicates that soil fertility is one of the factors that negatively affects the patterns of spatial distribution of species richness, incidence and abundance of GFI at the community level in two different ways: i) indirectly affecting GFI species richness in plants adapted to infertile soils and ii) directly affecting GFI responses to plant traits of hosts found in a fertility gradient.  相似文献   

14.
The objectives of this paper are broadly to examine arctic soils and specifically to examine soil properties at ITEX sites. The Arctic is dominated by cold, wet, shallow soils often characterized by surficial organic horizons. Seven of 11 soil orders in Soil Taxonomy are present in the circumarctic and alpine zones of the ITEX Project. Soil organic matter is highly correlated to soil carbon (sink or source of atmospheric CO2), soil moisture (surficial energy balance), and soil nitrogen (plant limiting nutrient). Because of these vital roles, soil organic matter is a keystone that will influence the future response of arctic ecosystems to climate change.  相似文献   

15.
Tropical forest floor characteristics such as depth and nutrient concentrations are highly heterogeneous even over small spatial scales and it is unclear how these differences contribute to patchiness in forest floor arthropod abundance and diversity. In a lowland tropical forest in Panama we experimentally increased litter standing crop by removing litter from five plots (L−) and adding it to five other plots (L+); we had five control plots. After 32 mo of treatments we investigated how arthropod abundance and diversity were related to differences in forest floor physical (mass, depth, water content) and chemical properties (pH, nutrient concentrations). Forest floor mass and total arthropod abundance were greater in L+ plots compared with controls. There were no treatment differences in nutrient concentrations, pH or water content of the organic horizons. Over all plots, the mass of the fermentation horizon (Oe) was greater than the litter horizon (Oi); arthropod diversity and biomass were also greater in the Oe horizon but nutrient concentrations tended to be higher in the Oi horizon. Arthropod abundance was best explained by forest floor mass, while arthropod diversity was best explained by phosphorus, calcium and sodium concentrations in the Oi horizon and by phosphorus concentrations in the Oe horizon. Differences in arthropod community composition between treatments and horizons correlated with phosphorus concentration and dry mass of the forest floor. We conclude that at a local scale, arthropod abundance is related to forest floor mass (habitat space), while arthropod diversity is related to forest floor nutrient concentrations (habitat quality).  相似文献   

16.
Leaching of dissolved organic carbon (DOC) from the O layer is important for the carbon cycling of forest soils. Here we study the role of the Oi, Oe and Oa horizons in DOC leaching from the forest floor in field manipulations carried out in a Norway spruce forest stand in southern Sweden. The manipulations involved the addition and removal of litter and the removal of Oi, Oe and Oa horizons. Our data suggest that both recent litter and humified organic matter contribute significantly to the leaching of dissolved organic matter from the O layer. An addition of litter corresponding to four times annual litterfall resulted in a 35% increase in DOC concentrations and fluxes although the specific UV absorbance remained unchanged. The removal of litterfall and the Oi horizon resulted in a decreased DOC concentration and in a significant increase in the molar UV absorptivity. The DOC concentration under the Oa horizon was not significantly different from that under the Oe horizon and there were no increase in DOC flux, but rather a decrease, from the bottom of the Oe horizon to the bottom of the Oa horizon, suggesting that there is no net release of DOC in the Oa horizon. However, significant leaching of DOC occurred from the Oa horizon when litterfall and the Oi and Oe horizons were removed. This indicates that there is both a removal of DOC from the Oi and Oe horizons and a substantial production of DOC in the Oa horizon. Quantitatively, we suggest that the Oi, Oe and Oa horizons contributed approximately 20, 30 and 50%, respectively, to the overall leaching of DOC from the O layer.  相似文献   

17.
A consensus map of QTLs controlling the root length of maize   总被引:1,自引:0,他引:1  
Despite their low carbon (C) content, most subsoil horizons contribute to more than half of the total soil C stocks, and therefore need to be considered in the global C cycle. Until recently, the properties and dynamics of C in deep soils was largely ignored. The aim of this review is to synthesize literature concerning the sources, composition, mechanisms of stabilisation and destabilization of soil organic matter (SOM) stored in subsoil horizons. Organic C input into subsoils occurs in dissolved form (DOC) following preferential flow pathways, as aboveground or root litter and exudates along root channels and/or through bioturbation. The relative importance of these inputs for subsoil C distribution and dynamics still needs to be evaluated. Generally, C in deep soil horizons is characterized by high mean residence times of up to several thousand years. With few exceptions, the carbon-to-nitrogen (C/N) ratio is decreasing with soil depth, while the stable C and N isotope ratios of SOM are increasing, indicating that organic matter (OM) in deep soil horizons is highly processed. Several studies suggest that SOM in subsoils is enriched in microbial-derived C compounds and depleted in energy-rich plant material compared to topsoil SOM. However, the chemical composition of SOM in subsoils is soil-type specific and greatly influenced by pedological processes. Interaction with the mineral phase, in particular amorphous iron (Fe) and aluminum (Al) oxides was reported to be the main stabilization mechanism in acid and near neutral soils. In addition, occlusion within soil aggregates has been identified to account for a great proportion of SOM preserved in subsoils. Laboratory studies have shown that the decomposition of subsoil C with high residence times could be stimulated by addition of labile C. Other mechanisms leading to destabilisation of SOM in subsoils include disruption of the physical structure and nutrient supply to soil microorganisms. One of the most important factors leading to protection of SOM in subsoils may be the spatial separation of SOM, microorganisms and extracellular enzyme activity possibly related to the heterogeneity of C input. As a result of the different processes, stabilized SOM in subsoils is horizontally stratified. In order to better understand deep SOM dynamics and to include them into soil C models, quantitative information about C fluxes resulting from C input, stabilization and destabilization processes at the field scale are necessary.  相似文献   

18.
Mature tropical forests are disappearing and secondary forests are becoming more abundant, thus there is an increasing need to understand the ecology and management of secondary forests. In the Yucatan Peninsula, Mexico, seasonally dry tropical forests are subject to frequent fire, and early-successional stands are extremely dense. We applied vegetation thinning (removal of all stems < 2 cm in diameter) to hasten secondary succession and open the understory to reduce the fire ladder in an 11-yr-old stand. We quantified the effect of vegetation thinning on above- and belowground carbon over 5 yr. Aboveground carbon included all standing vegetation and belowground carbon included fine roots and organic carbon in the Oi, Oe, and Oa soil horizons. Trees with diameter of 2–10 cm and > 10 cm had higher carbon accumulation rates in thinned plots than in control plots. Carbon stored in the Oi-horizon and the Oe > 2 mm fraction remained significantly higher in thinned plots even 5 yr after treatment. Carbon in fine roots was significantly higher in thinned plots, and radiocarbon (14C) data suggest that fine roots in thinned plots were recently produced in comparison with fine roots in control plots. We did not find significant differences in total ecosystem carbon after 5 yr (126 ± 6 and 136 ± 8 Mg C/ha, respectively). These results suggest rapid carbon recovery and support the hypothesis that young tropical forests thinned to hasten succession and reduce the fire hazard may have only a short-term negative impact on carbon accumulation in vegetation and soils.  相似文献   

19.
Effect of phosphorus availability on basal root shallowness in common bean   总被引:27,自引:2,他引:25  
Liao  Hong  Rubio  Gerardo  Yan  Xiaolong  Cao  Aiqin  Brown  Kathleen M.  Lynch  Jonathan P. 《Plant and Soil》2001,232(1-2):69-79
Root gravitropism may be an important element of plant response to phosphorus availability because it determines root foraging in fertile topsoil horizons, and thereby phosphorus acquisition. In this study we seek to test this hypothesis in both two dimensional paper growth pouch and three-dimensional solid media of sand and soil cultures. Five common bean (Phaseolus vulgaris L.) genotypes with contrasting adaptation to low phosphorus availability were evaluated in growth pouches over 6 days of growth, and in sand culture and soil culture over 4 weeks of growth. In all three media, phosphorus availability regulated the gravitropic response of basal roots in a genotype-dependent manner. In pouches, sand, and soil, the phosphorus-inefficient genotype DOR 364 had deeper roots with phosphorus stress, whereas the phosphorus-efficient genotype G19833 responded to phosphorus stress by producing shallower roots. Genotypes were most responsive to phosphorus stress in sand culture, where relative root allocation to the 0–3- and 3–6-cm horizons increased 50% with phosphorus stress, and varied 300% (3–6 cm) to 500% (0–3 cm) among genotypes. Our results indicate that (1) phosphorus availability regulates root gravitropic growth in both paper and solid media, (2) responses observed in young seedlings continue throughout vegetative growth, (3) the response of root gravitropism to phosphorus availability varies among genotypes, and (4) genotypic adaptation to low phosphorus availability is correlated with the ability to allocate roots to shallow soil horizons under phosphorus stress.  相似文献   

20.
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0–20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号