首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this investigation were 1) to determine whether endurance exercise training could reverse impairments in insulin-stimulated compartmentalization and/or activation of aPKCzeta/lambda and Akt2 in skeletal muscle from high-fat-fed rodents and 2) to assess whether the PPARgamma agonist rosiglitazone could reverse impairments in skeletal muscle insulin signaling typically observed after high-fat feeding. Sprague-Dawley rats were placed on chow (NORCON, n = 16) or high-fat (n = 64) diets for 4 wk. During a subsequent 4-wk experimental period, high-fat-fed rats were allocated (n = 16/group) to either sedentary control (HFC), exercise training (HFX), rosiglitazone treatment (HFRSG), or a combination of both exercise training and rosiglitazone (HFRX). Following the 4-wk experimental period, animals underwent hindlimb perfusions. Insulin-stimulated plasma membrane-associated aPKCzeta and -lambda protein concentration, aPKCzeta/lambda activity, GLUT4 protein concentration, cytosolic Akt2, and aPKCzeta/lambda activities were reduced (P < 0.05) in HFC compared with NORCON. Cytosolic Akt2, aPKCzeta, and aPKClambda protein concentrations were not affected in HFC compared with NORCON. Exercise training reversed the deleterious effects of the high-fat diet such that insulin-stimulated compartmentalization and activation of components of the insulin-signaling cascade in HFX were normalized to NORCON. High-fat diet-induced impairments to skeletal muscle glucose metabolism were not reversed by rosiglitazone administration, nor did rosiglitazone augment the effect of exercise. Our findings indicate that chronic exercise training, but not rosiglitazone, reverses high-fat diet induced impairments in compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle.  相似文献   

2.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 and -2 and weakly, if at all, impaired insulin stimulation of phosphatidylinositol 3-kinase. Glucosamine, however, severely impaired insulin stimulation of Akt. Inhibition of insulin-stimulated glucose transport was correlated with that of Akt activity. In these cells, glucosamine also inhibited insulin stimulation of p70 S6 kinase. Glucosamine did not alter basal glucose transport and insulin stimulation of GLUT-1 translocation and mitogen-activated protein kinase. In summary, glucosamine induced complete and reversible insulin resistance in 3T3-L1 adipocytes. This insulin resistance was accompanied by impaired insulin stimulation of GLUT-4 translocation and Akt activity, without significant impairment of upstream molecules in insulin-signaling pathway.  相似文献   

3.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

4.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

5.
Previous studies have shown that when exercise isstopped there is a rapid reversal of the training-induced adaptiveincrease in muscle glucose transport capacity. Endurance exercisetraining brings about an increase in GLUT-4 in skeletal muscle. Theprimary purpose of this study was to determine whether the rapidreversal of the increase in maximally insulin-stimulated glucosetransport after cessation of training can be explained by a similarlyrapid decrease in GLUT-4. A second purpose was to evaluate thepossibility, suggested by previous studies, that the magnitude of theadaptive increase in muscle GLUT-4 decreases when exercise training is extended beyond a few days. We found that both GLUT-4 and maximally insulin-stimulated glucose transport were increased approximately twofold in epitrochlearis muscles of rats trained by swimming for 6 h/day for 5 days or 5 wk. GLUT-4 was 90% higher, citrate synthaseactivity was 23% higher, and hexokinase activity was 28% higher intriceps muscle of the 5-day trained animals compared with the controls.The increases in GLUT-4 protein and in insulin-stimulated glucosetransport were completely reversed within 40 h after the last exercisebout, after both 5 days and 5 wk of training. In contrast, theincreases in citrate synthase and hexokinase activities were unchanged40 h after 5 days of exercise. These results support the conclusionthat the rapid reversal of the increase in the insulin responsivenessof muscle glucose transport after cessation of training is explained bythe short half-life of the GLUT-4 protein.

  相似文献   

6.
High-fat feeding (HFF) is a well-accepted model for nutritionally-induced insulin resistance. The purpose of this investigation was to assess the metabolic responses of female lean Zucker rats provided regular chow (4% fat) or a high-fat chow (50% fat) for 15 wk. HFF rats spontaneously adjusted food intake so that daily caloric intake matched that of chow-fed (CF) controls. HFF animals consumed more (P < 0.05) calories from fat (31.9 +/- 1.2 vs. 2.4 +/- 0.2 kcal/day) and had significantly greater final body weights (280 +/- 10 vs. 250 +/- 5 g) and total visceral fat (24 +/- 3 vs. 10 +/- 1 g). Fasting plasma insulin was 2.3-fold elevated in HFF rats. Glucose tolerance (58%) and whole body insulin sensitivity (75%) were markedly impaired in HFF animals. In HFF plantaris muscle, in vivo insulin receptor beta-subunit (IR-beta) and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphorylation of Akt Ser473 and glycogen synthase kinase-3beta (GSK-3beta) Ser9, relative to circulating insulin levels, were decreased by 40-59%. In vitro insulin-stimulated glucose transport in HFF soleus was decreased by 54%, as were IRS-1 tyrosine phosphorylation (26%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (25%), the latter indicative of GSK-3 overactivity. GSK-3 inhibition in HFF soleus using CT98014 increased insulin-stimulated glucose transport (28%), IRS-1 tyrosine phosphorylation (28%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (48%). In summary, the female lean Zucker rat fed a high-fat diet represents an isocaloric model of nutritionally-induced insulin resistance associated with moderate visceral fat gain, hyperinsulinemia, and impairments of skeletal muscle insulin-signaling functionality, including GSK-3beta overactivity.  相似文献   

7.
Circulating dehydroepiandrosterone (DHEA) is converted to testosterone or estrogen in the target tissues. Recently, we demonstrated that skeletal muscles are capable of locally synthesizing circulating DHEA to testosterone and estrogen. Furthermore, testosterone is converted to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase and exerts biophysiological actions through binding to androgen receptors. However, it remains unclear whether skeletal muscle can synthesize DHT from testosterone and/or DHEA and whether these hormones affect glucose metabolism-related signaling pathway in skeletal muscles. We hypothesized that locally synthesized DHT from testosterone and/or DHEA activates glucose transporter-4 (GLUT-4)-regulating pathway in skeletal muscles. The aim of the present study was to clarify whether DHT is synthesized from testosterone and/or DHEA in cultured skeletal muscle cells and whether these hormones affect the GLUT-4-related signaling pathway in skeletal muscles. In the present study, the expression of 5alpha-reductase mRNA was detected in rat cultured skeletal muscle cells, and the addition of testosterone or DHEA increased intramuscular DHT concentrations. Addition of testosterone or DHEA increased GLUT-4 protein expression and its translocation. Furthermore, Akt and protein kinase C-zeta/lambda (PKC-zeta/lambda) phosphorylations, which are critical in GLUT-4-regulated signaling pathways, were enhanced by testosterone or DHEA addition. Testosterone- and DHEA-induced increases in both GLUT-4 expression and Akt and PKC-zeta/lambda phosphorylations were blocked by a DHT inhibitor. Finally, the activities of phosphofructokinase and hexokinase, main glycolytic enzymes, were enhanced by testosterone or DHEA addition. These findings suggest that skeletal muscle is capable of synthesizing DHT from testosterone, and that DHT activates the glucose metabolism-related signaling pathway in skeletal muscle cells.  相似文献   

8.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

9.
Male heterozygous TG(mREN2)27 rats (TGR) overexpress a murine renin transgene, display marked hypertension, and have insulin resistance of skeletal muscle glucose transport and insulin signaling. We have shown previously that voluntary exercise training by TGR improves insulin-mediated skeletal muscle glucose transport (Kinnick TR, Youngblood EB, O'Keefe MP, Saengsirisuwan V, Teachey MK, and Henriksen EJ. J Appl Physiol 93: 805-812, 2002). The present study evaluated whether this training-induced enhancement of muscle glucose transport is associated with upregulation of critical insulin signaling elements, including insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3. TGR remained sedentary or ran spontaneously in activity wheels for 6 wk, averaging 7.1 +/- 0.8 km/day by the end of week 3 and 4.3 +/- 0.5 km/day over the final week of training. Exercise training reduced total abdominal fat by 20% (P < 0.05) in TGR runners (2.64 +/- 0.01% of body weight) compared with sedentary TGR controls (3.28 +/- 0.01%). Insulin-stimulated (2 mU/ml) glucose transport activity in soleus muscle was 36% greater in TGR runners compared with sedentary TGR controls. However, the protein expression and functionality of tyrosine phosphorylation of insulin receptor and IRS-1, IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase, and Ser473 phosphorylation of Akt were not altered by exercise training. Only insulin-stimulated glycogen synthase kinase-3beta Ser9 phosphorylation was increased (22%) by exercise training. These results indicate that voluntary exercise training in TGR can enhance insulin-mediated glucose transport in skeletal muscle, as well as reduce total abdominal fat mass. However, this adaptive response in muscle occurs independently of modifications in the proximal elements of the insulin signaling cascade.  相似文献   

10.
We investigated the possible regulatory role of glycogen in insulin-stimulated glucose transport and insulin signaling in skeletal muscle. Rats were preconditioned to obtain low (LG), normal, or high (HG) muscle glycogen content, and perfused isolated hindlimbs were exposed to 0, 100, or 10,000 microU/ml insulin. In the fast-twitch white gastrocnemius, insulin-stimulated glucose transport was significantly higher in LG compared with HG. This difference was less pronounced in the mixed-fiber red gastrocnemius and was absent in the slow-twitch soleus. In the white gastrocnemius, insulin activation of insulin receptor tyrosine kinase and phosphoinositide 3-kinase was unaffected by glycogen levels, whereas protein kinase B activity was significantly higher in LG compared with HG. In additional incubation experiments on fast-twitch epitrochlearis muscles, insulin-stimulated cell surface GLUT-4 content was significantly higher in LG compared with HG. The data indicate that, in fast-twitch muscle, the effect of insulin on glucose transport and cell surface GLUT-4 content is modulated by glycogen content, which does not involve initial but possibly more downstream signaling events.  相似文献   

11.
Reduced insulin sensitivity is a key factor in the pathogenesis of type 2 diabetes and hypertension. Skeletal muscle insulin resistance is particularly important for its major role in insulin-mediated glucose disposal. Angiotensin II (ANG II) is integral in regulating blood pressure and plays a role in the pathogenesis of hypertension. In addition, we have documented that ANG II-induced skeletal muscle insulin resistance is associated with generation of reactive oxygen species (ROS). However, the linkage between ROS and insulin resistance in skeletal muscle remains unclear. To explore potential mechanisms, we employed the transgenic TG(mRen2)27 (Ren-2) hypertensive rat, which harbors the mouse renin transgene and exhibits elevated tissue ANG II levels, and skeletal muscle cell culture. Compared with Sprague-Dawley normotensive control rats, Ren-2 skeletal muscle exhibited significantly increased oxidative stress, NF-kappaB activation, and TNF-alpha expression, which were attenuated by in vivo treatment with an angiotensin type 1 receptor blocker (valsartan) or SOD/catalase mimetic (tempol). Moreover, ANG II treatment of L6 myotubes induced NF-kappaB activation and TNF-alpha production and decreased insulin-stimulated Akt activation and GLUT-4 glucose transporter translocation to plasma membranes. These effects were markedly diminished by treatment of myotubes with valsartan, the antioxidant N-acetylcysteine, NADPH oxidase-inhibiting peptide (gp91 ds-tat), or NF-kappaB inhibitor (MG-132). Similarly, NF-kappaB p65 small interfering RNA reduced NF-kappaB p65 subunit expression and nuclear translocation and TNF-alpha production but improved insulin-stimulated phosphorylation (Ser(473)) of Akt and translocation of GLUT-4. These findings suggest that NF-kappaB plays an important role in ANG II/ROS-induced skeletal muscle insulin resistance.  相似文献   

12.
It is now known that prenatal ethanol (EtOH) exposure is associated with impaired glucose tolerance and insulin resistance in rat offspring, but the underlying mechanism(s) is not known. To test the hypothesis that in vivo insulin signaling through phosphatidylinositol 3 (PI3)-kinase is reduced in skeletal muscle of adult rat offspring exposed to EtOH in utero, we gave insulin intravenously to these rats and probed steps in the PI3-kinase insulin signaling pathway. After insulin treatment, EtOH-exposed rats had decreased tyrosine phosphorylation of the insulin receptor beta-subunit and of insulin receptor substrate-1 (IRS-1), as well as reduced IRS-1-associated PI3-kinase in the gastrocnemius muscle compared with control rats. There was no significant difference in basal or insulin-stimulated Akt activity between EtOH-exposed rats and controls. Insulin-stimulated PKC isoform zeta phosphorylation and membrane association were reduced in EtOH-exposed rats compared with controls. Muscle insulin binding and peptide contents of insulin receptor, IRS-1, p85 subunit of PI3-kinase, Akt/PKB, and atypical PKC isoform zeta were not different between EtOH-exposed rats and controls. Thus insulin resistance in rat offspring exposed to EtOH in utero may be explained, at least in part, by impaired insulin signaling through the PI3-kinase pathway in skeletal muscle.  相似文献   

13.
Renin-angiotensin-aldosterone system (RAAS) activation mediates increases in reactive oxygen species (ROS) and impaired insulin signaling. The transgenic Ren2 rat manifests increased tissue renin-angiotensin system activity, elevated serum aldosterone, hypertension, and insulin resistance. To explore the role of aldosterone in the pathogenesis of insulin resistance, we investigated the impact of in vivo treatment with a mineralocorticoid receptor (MR) antagonist on insulin sensitivity in Ren2 and aged-matched Sprague-Dawley (SD) control rats. Both groups (age 6-8 wk) were implanted with subcutaneous time-release pellets containing spironolactone (0.24 mg/day) or placebo over 21 days. Systolic blood pressure (SBP) and intraperitoneal glucose tolerance test were determined. Soleus muscle insulin receptor substrate-1 (IRS-1), tyrosine phosphorylated IRS-1, protein kinase B (Akt) phosphorylation, GLUT4 levels, and insulin-stimulated 2-deoxyglucose uptake were evaluated in relation to NADPH subunit expression/oxidase activity and ROS production (chemiluminescence and 4-hydroxy-2-nonenal immunostaining). Along with increased soleus muscle NADPH oxidase activity and ROS, there was systemic insulin resistance and reduced muscle IRS-1 tyrosine phosphorylation, Akt phosphorylation/activation, and GLUT4 expression in the Ren2 group (each P < 0.05). Despite not decreasing blood pressure, low-dose spironolactone treatment improved soleus muscle insulin signaling parameters and systemic insulin sensitivity in concert with reductions in NADPH oxidase subunit expression/activity and ROS production (each P < 0.05). Our findings suggest that aldosterone contributes to insulin resistance in the transgenic Ren2, in part, by increasing NADPH oxidase activity in skeletal muscle tissue.  相似文献   

14.
Insulin resistance of skeletal muscle glucose transport due to prolonged loss of ovarian function in ovariectomized (OVX) rats is accompanied by other features of the metabolic syndrome and may be confounded by increased calorie consumption. In this study, we investigated the role of calorie consumption in the development of insulin resistance in OVX rats. In addition, we examined the cellular mechanisms underlying skeletal muscle insulin resistance in OVX rats. Female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated (SHAM). OVX rats either had free access to food, pair feeding (PF) with SHAM or received a 35% reduction in food intake (calorie restriction; CR) for 12weeks. Compared with SHAM, ovariectomy induced skeletal muscle insulin resistance, which was associated with decreases (32-70%) in tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), IRS-1 associated p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase), and Akt Ser(473) phosphorylation whereas insulin-stimulated phosphorylation of IRS-1 Ser(307), SAPK/JNK Thr(183)/Tyr(185), and p38 mitogen-activated protein kinase (MAPK) Thr(180)/Tyr(182) was increased (24-62%). PF improved the serum lipid profile but did not restore insulin-stimulated glucose transport, indicating that insulin resistance in OVX rats is a consequence of ovarian hormone deprivation. In contrast, impaired insulin sensitivity and defective insulin signaling were not observed in the skeletal muscle of OVX+CR rats. Therefore, we provide evidence for the first time that CR effectively prevents the development of insulin resistance and impaired insulin signaling in the skeletal muscle of OVX rats.  相似文献   

15.
Leptin administration increases fatty acid (FA) oxidation rates and decreases lipid storage in oxidative skeletal muscle, thereby improving insulin response. We have previously shown high-fat (HF) diets to rapidly induce skeletal muscle leptin resistance, prior to the disruption of normal muscle FA metabolism (increase in FA transport; accumulation of triacylglycerol, diacylglycerol, ceramide) that occurs in advance of impaired insulin signaling and glucose transport. All of this occurs within a 4-wk period. Conversely, exercise can rapidly improve insulin response, in as little as one exercise bout. Thus, if the early development of leptin resistance is a contributor to HF diet-induced insulin resistance (IR) in skeletal muscle, then it is logical to predict that the rapid restoration of insulin response by exercise training would be preceded by the recovery of leptin response. In the current study, we sought to determine 1) whether 1, 2, or 4 wk of exercise training was sufficient to restore leptin response in isolated soleus muscle of rats already consuming a HF diet (60% kcal), and 2) whether this preceded the training-induced corrections in FA metabolism and improved insulin-stimulated glucose transport. In the low-fat (LF)-fed control group, insulin increased glucose transport by 153% and leptin increased AMPK and ACC phosphorylation and the rate of palmitate oxidation (+73%). These responses to insulin and leptin were either severely blunted or absent following 4 wk of HF feeding. Exercise intervention decreased muscle ceramide content (-28%) and restored insulin-stimulated glucose transport to control levels within 1 wk; muscle leptin response (AMPK and ACC phosphorylation, FA oxidation) was also restored, but not until the 2-wk time point. In conclusion, endurance exercise training is able to restore leptin response, but this does not appear to be a necessary precursor for the restoration of insulin response.  相似文献   

16.
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in the obese Zucker rat, a widely used rodent model of obesity-associated insulin resistance, and in insulin-resistant humans with impaired glucose tolerance or Type 2 diabetes. A single bout of prolonged aerobic exercise (30-60 min at approximately 60-70% of maximal oxygen consumption) can significantly lower plasma glucose levels, owing to normal contraction-induced stimulation of GLUT-4 glucose transporter translocation and glucose transport activity in insulin-resistant skeletal muscle. However, little is currently known about the effects of acute exercise on muscle insulin signaling in the postexercise state in insulin-resistant individuals. A well-established adaptive response to exercise training in conditions of insulin resistance is improved glucose tolerance and enhanced skeletal muscle insulin sensitivity of glucose transport. This training-induced enhancement of insulin action is associated with upregulation of specific components of the glucose transport system in insulin-resistant muscle and includes increased protein expression of GLUT-4 and insulin receptor substrate-1. It is clear that further investigations are needed to further elucidate the specific molecular mechanisms underlying the beneficial effects of acute exercise and exercise training on the glucose transport system in insulin-resistant mammalian skeletal muscle.  相似文献   

17.
Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.  相似文献   

18.
Derangements in skeletal muscle fatty acid (FA) metabolism associated with insulin resistance in obesity appear to involve decreased FA oxidation and increased accumulation of lipids such as ceramides and diacylglycerol (DAG). We investigated potential lipid-related mechanisms of metformin (Met) and/or exercise for blunting the progression of hyperglycemia/hyperinsulinemia and skeletal muscle insulin resistance in female Zucker diabetic fatty rats (ZDF), a high-fat (HF) diet-induced model of diabetes. Lean and ZDF rats consumed control or HF diet (48 kcal %fat) alone or with Met (500 mg/kg), with treadmill exercise, or with both exercise and Met interventions for 8 wk. HF-fed ZDF rats developed hyperglycemia (mean: 24.4 +/- 2.1 mM), impairments in muscle insulin-stimulated glucose transport, increases in the FA transporter FAT/CD36, and increases in total ceramide and DAG content. The development of hyperglycemia was significantly attenuated with all interventions, as was skeletal muscle FAT/CD36 abundance and ceramide and DAG content. Interestingly, improvements in insulin-stimulated glucose transport and increased GLUT4 transporter expression in isolated muscle were seen only in conditions that included exercise training. Reduced FA oxidation and increased triacylglycerol synthesis in isolated muscle were observed with all ZDF rats compared with lean rats (P < 0.01) and were unaltered by therapeutic intervention. However, exercise did induce modest increases in peroxisome proliferator-activated receptor-gamma coactivator-1alpha, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase activity. Thus reduction of skeletal muscle FAT/CD36 and content of ceramide and DAG may be important mechanisms by which exercise training blunts the progression of diet-induced insulin resistance in skeletal muscle.  相似文献   

19.
We hypothesized that levodopa with carbidopa, a common therapy for patients with Parkinson's disease, might contribute to the high prevalence of insulin resistance reported in patients with Parkinson's disease. We examined the effects of levodopa-carbidopa on glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in skeletal muscle, the predominant insulin-responsive tissue. In isolated muscle, levodopa-carbidopa completely prevented insulin-stimulated glycogen accumulation and glucose transport. The levodopa-carbidopa effects were blocked by propranolol, a beta-adrenergic antagonist. Levodopa-carbidopa also inhibited the insulin-stimulated increase in glycogen synthase activity, whereas propranolol attenuated this effect. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was reduced by levodopa-carbidopa, although Akt phosphorylation was unaffected by levodopa-carbidopa. A single in vivo dose of levodopa-carbidopa increased skeletal muscle cAMP concentrations, diminished glycogen synthase activity, and reduced tyrosine phosphorylation of IRS-1. A separate set of rats was treated intragastrically twice daily for 4 wk with levodopa-carbidopa. After 4 wk of treatment, oral glucose tolerance was reduced in rats treated with drugs compared with control animals. Muscles from drug-treated rats contained at least 15% less glycogen and approximately 50% lower glycogen synthase activity compared with muscles from control rats. The data demonstrate beta-adrenergic-dependent inhibition of insulin action by levodopa-carbidopa and suggest that unrecognized insulin resistance may exist in chronically treated patients with Parkinson's disease.  相似文献   

20.
Hypertension is often accompanied by insulin resistance of skeletal muscle glucose transport. The male heterozygous TG(mREN2)27 rat, which harbors a mouse transgene for renin, displays local elevations in the renin-angiotensin system and exhibits markedly elevated systolic blood pressure (SBP). The present study was undertaken to characterize insulin-stimulated skeletal muscle glucose transport in male heterozygous TG(mREN2)27 rats and to evaluate the effect of voluntary exercise training on SBP and skeletal muscle glucose transport. Compared with normotensive Sprague-Dawley rats, TG(mREN2)27 rats displayed a 53% elevation (P < 0.05) in SBP, a twofold increase in plasma free fatty acid levels, and an exaggerated insulin response during an oral glucose tolerance test. Moreover, insulin-mediated glucose transport (2-deoxyglucose uptake) in isolated epitrochlearis and soleus muscles of TG(mREN2)27 animals was 33 and 43% less, respectively, than in Sprague-Dawley controls. TG(mREN2)27 rats ran voluntarily for 6 wk and achieved daily running distances of 6-7 km over the final 3 wk. Training caused a 36% increase in peak aerobic capacity and a 16% reduction in resting SBP. Fasting plasma insulin (21%) and free fatty acid (34%) levels were reduced in the trained TG(mREN2)27 rats. Whole body glucose tolerance was improved in the trained TG(mREN2)27 rats and was associated with increases of 39 and 50% in insulin-mediated glucose transport in epitrochlearis and soleus muscles, respectively. Whole muscle GLUT-4 protein was increased in the soleus (23%), but not in the epitrochlearis, of trained TG(mREN2)27 rats. These data indicate that the male heterozygous TG(mREN2)27 rat is a model of both hypertension and insulin resistance. Importantly, both of these defects can be beneficially modified by voluntary exercise training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号