首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complexes of DNA - HMGB1 protein - manganese ions have been studied using circular dichroism (CD) technique. It was shown that in such three-component system the interactions of both the protein and metal ions with DNA differ from those in two-component complexes. The manganese ions do not affect the CD spectrum of free HMGB1 protein. However, Mn2+ ions induce considerable changes in the CD spectrum of free DNA in the spectral range of 260-290 nm. The presence of Mn2+ ions prevents formation of the ordered supramolecular structures specific for the HMGB1-DNA complexes. The interaction of manganese ions with DNA has a marked influence on the local DNA structure changing the properties of protein-binding sites. This results in the serious decrease in cooperativity of the DNA-protein binding. Such changes in the mode of the DNA-protein interactions occur at concentrations as small as 0.01 mM Mn2+. Moreover, the changes in local DNA structure induced by manganese ions promote the appearance of new HMGB1 binding sites on the DNA double helix. At the same time interactions with HMGB1 protein induce alterations in the structure of the DNA double helix which increase with a growth of the protein/DNA ratio. These alterations make the DNA/protein complex especially sensitive to manganese ions. Under these conditions the Mn2+ ions strongly affect the DNA structure that reflects in abrupt changes of the CD spectra of DNA in the complex in the range of 260-290 nm. Thus, structural changes of the DNA double helix in the three-component DNA-HMGB1-Mn2+ complexes come as a result of the combined and interdependent interactions of DNA with Mn2+ ions and the molecules of HMGB1.  相似文献   

2.
The complexes of DNA–HMGB1 protein–manganese ions have been studied using the circular dichroism (CD) technique. It was shown that the interactions of both the protein and metal ions with DNA in this three-component system differ from those in two-component complexes. The manganese ions did not affect the CD spectrum of the free HMGB1 protein. However, Mn2+ ions induced considerable changes in the CD spectrum of free DNA in the spectral range of 260–290 nm. The presence of Mn2+ ions prevented the formation of the ordered supramolecular structures typical of HMGB1–DNA complexes. The interaction of manganese ions with DNA had a marked influence on the local DNA structure, changing the properties of protein-binding sites and resulting in a marked decrease in cooperativity of HMGB1–DNA binding. Such changes in the mode of protein–DNA interactions occurred at concentrations as small as 0.01 mM Mn2+. Moreover, the changes in local DNA structure induced by the manganese ions promoted the appearance of new HMGB1 binding sites in the DNA double helix. At the same time, interactions with the HMGB1 protein induced alterations in the structure of the DNA double helix, which increased with an increase in the protein-to-DNA ratio. These alterations made the DNA–protein complex especially sensitive to manganese ions. Under these conditions the Mn2+ ions strongly affected the DNA structure, which was reflected in abrupt changes in the CD spectra of DNA in the complex in the range of 260–290 nm. Thus, structural changes in the DNA double helix in three-component DNA–HMGB1–Mn2+ complexes result from the combined and interdependent interactions of DNA with Mn2+ ions and HMGB1 molecules.  相似文献   

3.
The facile construction of metal–DNA complexes using ‘Click’ reactions is reported here. A series of 2′-propargyl-modified DNA oligonucleotides were initially synthesized as structure scaffolds and were then modified through ‘Click’ reaction to incorporate a bipyridine ligand equipped with an azido group. These metal chelating ligands can be placed in the DNA context in site-specific fashion to provide versatile templates for binding various metal ions, which are exchangeable using a simple EDTA washing-and-filtration step. The constructed metal–DNA complexes were found to be thermally stable. Their structures were explored by solving a crystal structure of a propargyl-modified DNA duplex and installing the bipyridine ligands by molecular modeling and simulation. These metal–DNA complexes could have wide applications as novel organometallic catalysts, artificial ribonucleases, and potential metal delivery systems.  相似文献   

4.
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.  相似文献   

5.
C Li  F Zhao  Y Huang  X Liu  Y Liu  R Qiao  Y Zhao 《Bioconjugate chemistry》2012,23(9):1832-1837
Genome manipulation controlled by small metal complexes has attracted extensive interest because of their potential application in the fields of molecular biotechnology and drug development. However, their medicinal application is still limited due to the distinct toxicity of the free radicals generated by partial metal complexes based on oxidative cleaving processes. Thus, it is still a challenge for us to use metal free agent to cleave DNA. In this work, we showed that a family of polyamine-grafted PASP (poly(aspartic acid)) conjugates is able to rapidly induce DNA cleavage in the absence of metal ions, and obtain a high-yield linearization product via a hydrolytic path. From the results of detailed control experiments, it was revealed that the formation of polyamine cation/phosphate anion pair and free ungrafted nucleophilic groups would be the key factors to improve DNA linearization. Constructing polyamine conjugates based on short peptide such as polyamine-grafted PASP, as achieved here, could provide an attractive strategy for developing mild and efficient artificial nucleases as well as researching catalytic mechanisms on DNA chemistry.  相似文献   

6.
Chinese hamster cells (V79-4), human lymphocytes and mouse ascites cell were exposed to gamma-rays and heavy ions (4He and 12C). Sedimentation of complexes containing DNA was studied after cell lysis by centrifugation in a neutral sucrose gradient. The distinctions noted after irradiation with gamma-rays and heavy ions are consistent with the idea of the superhelical organization of DNA into discrete and membrane-bound compact units. According to the estimates made the diameter of these complexes was approximately 0.2 micron and DNA content, about 2 X 10(9) dalton.  相似文献   

7.
Restriction endonucleases protect bacterial cells against bacteriophage infection by cleaving the incoming foreign DNA into fragments. In presence of Mg2+ ions, EcoRV is able to cleave the DNA but not in presence of Ca2+, although the protein binds to DNA in presence of both metal ions. We make an attempt to understand this difference using conformational thermodynamics. We calculate the changes in conformational free energy and entropy of conformational degrees of freedom, like DNA base pair steps and dihedral angles of protein residues in Mg2+(A)-EcoRV-DNA complex compared to Ca2+(S)-EcoRV-DNA complex using all-atom molecular dynamics (MD) trajectories of the complexes. We find that despite conformational stability and order in both complexes, the individual degrees of freedom behave differently in the presence of two different metal ions. The base pairs in cleavage region are highly disordered in Ca2+(S)-EcoRV-DNA compared to Mg2+(A)-EcoRV-DNA. One of the acidic residues ASP90, coordinating to the metal ion in the vicinity of the cleavage site, is conformationally destabilized and disordered, while basic residue LYS92 gets conformational stability and order in Ca2+(S) bound complex than in Mg2+(A) bound complex. The enhanced fluctuations hinder placement of the metal ion in the vicinity of the scissile phosphate of DNA. Similar loss of conformational stability and order in the cleavage region is observed by the replacement of the metal ion. Considering the placement of the metal ion near scissile phosphate as requirement for cleavage action, our results suggest that the changes in conformational stability and order of the base pair steps and the protein residues lead to cofactor sensitivity of the enzyme. Our method based on fluctuations of microscopic conformational variables can be applied to understand enzyme activities in other protein-DNA systems.  相似文献   

8.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

9.
We present here a comparison of three different X-ray crystal structures of DNA tetradecamer sequence d(CCCGGGTACCCGGG)2 all at about 1.7 Å resolution. The sequence was designed as an attempt to form a DNA four-way junction with A-type helical arms. However, in the presence of zinc, magnesium, and in the absence of any metal ion, it does not take up the junction structure, but forms an A-type double helix. This allowed us to study possible conformational changes in the double helix due to the presence of metal ions. Upon addition of the zinc ion, there is a change in the space group from P41212 to P41. The overall conformation of the duplex remains the same. There are small changes in the interaction of the metal ions with the DNA. In the zinc-bound structure, there are two zinc ions that show direct interaction with the N7 atoms of terminal G13 bases at either end of the molecule. There are small changes in the interhelical contacts. The consequence of these differences is to break some of the symmetry and change the space group.  相似文献   

10.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact with the phosphate groups of DNA and the HMGB1 protein. Not only the negatively charged C-terminal part of the protein molecule, but also its DNA-binding domains participate in the interaction with metal ions. The latter leads to a change in the mode of protein–DNA interaction. The presence of Ca2+ ions prevents the formation of ordered supramolecular structures specific for the HMGB1–DNA complexes but promotes intermolecular aggregation. The structure of DNA complexes with the HMGB1 protein lacking the C-terminal tail appeared to be the most sensitive to the presence of Ca2+ ions. These data indicate that Ca2+ ions play no structural role in the HMGB1–DNA complexes, and their presence is not necessary for DNA compaction in such systems.  相似文献   

11.
Nucleoids of rat hepatocytes have been studied with the aid of electron microscopy. Proceeding from a morphologic comparison of nucleoids obtained at different conditions, it has been inferred that rosette-like structures are the basic element of nuclear DNA loop organization detected by sedimentation and fluorescent methods. Divalent metal ions play a significant role in stabilizing rosette-like structures. A scheme for DNA organization in the somatic cell interphase nucleus is suggested.  相似文献   

12.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

13.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact both with the phosphate groups of DNA and with the HMGB1 protein. Not only negatively charged C-terminal part of the protein molecule participates in interaction with metal ions but also its DNA-binding domains. The latter fact leads to the change of the mode of protein-DNA interaction. The presence of Ca2+ ions prevents formation of ordered supramolecular structures, specific for the HMGB1-DNA complexes, though promotes intermolecular aggregation. The structure of the complexes between DNA and the protein HMGB1 lacking C-terminal tail appears to be the most sensitive to the presence of Ca2+ ions. The data obtained allow to conclude that Ca2+ ions do not play a structural role in the HMGB1/DNA complexes and the presence of these ions is not necessary to DNA compaction in such systems.  相似文献   

14.
Abstract

The interaction of calf-thymus DNA with La3+, Eu3+ and Tb3+ has been investigated in aqueous solution at pH 6.5, using metal/DNA(P) molar ratios (r) 1/80, 1/40, 1/20, 1/10, 1/4 and 1/2. Correlations between FTIR spectral changes and DNA structural properties have been established. At low metal/DNA(P) (r) 1/80, the metal ions bind mainly to the PO? 2 groups of the backbone, resulting in increased base-stacking interaction and duplex stability. At (r) 1/40 and 1/20, metal ion binding to the PO? 2 and the guanine N-7 site (chelation) predominates with minor perturbations of the A-T base pairs. Evidence for this comes from the displacement of the band at 1712 cm?1 (T,G) towards a lower frequency and the PO? 2 antisymmetric band at 1222 cm?1 towards a higher frequency. At higher metal/DNA(P) ratio, r> 1/20, DNA begins to condensate and drastic structural changes occur, which are accompanied by the shift and intensity changes of several G-C and A-T absorption bands. No major departure from B-DNA conformation was observed before and after DNA condensation eventhough some local structural modifications were observed. A comparison with the Cu-DNA complexes (denaturated DNA) shows some degree of helical destabilizition of the biopolymer in the presence of lanthanide ions.  相似文献   

15.
A synaptic complex of Tn5 transposase with an extended outside end DNA duplex was prepared and crystallized, and its crystal structure was determined in an effort to reveal the role of metal ions in catalysis. Two Mn2+ ions bound to the active site when a single nucleotide of donor DNA was added to the 3' end of the transferred strand. Marked conformational changes were observed in the DNA bases closest to the active site. The position of the metal ions and the conformational changes of the DNA provide insight into the mechanism of hairpin formation and cleavage, and is consistent with a two-metal model for catalysis.  相似文献   

16.
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.  相似文献   

17.
The asorbic acid (AH-) auto-oxidation rates catalyzed by copper chelates of 1,10-phenanthroline (OP) or by iron chelates of bleomycin (BLM) are only slightly higher than the oxidation rates catalyzed by the metal ions. AH- oxidation in the presence of DNA is accompanied by degradation of the DNA. The rates of DNA scission by the metal chelates are markedly higher than the rates induced by the free metal ions. AH- oxidation is slowed down in the presence of DNA which forms ternary complexes with the chelates. The ternary complexes react slowly with AH- but induce DNA double strand breaks more efficiently than the free metal chelates. With OP, DNA is degraded by the reaction of the ternary complex, DNA-(OP)2Cu(I), withH2O2

AH- oxidation in the presence of DNA was biphasic, showing a marked rate increase after DNA was cleaved. We suggest that this sigmoidal pattern of the oxidation curves reflects the low initial oxidative activity of the ternary complexes, accelerating as DNA is degraded.

Using O2-produced by pulse radiolysis as a reductant, we found that AH- oxidation with (OP)2Cu(II) induced more DNA double strand breaks per single strand break than bipyridine-copper.

The site specific DNA damaging reactions indicated by these results are relevant to the mechanism of cytotoxic activities of bleomycin and similar antibiotics or cytotoxic agents.  相似文献   

18.
The molecule of the well-known ulceration inhibitor, famotidine, is an excellent coordinator of transition metal ions. The guanidine, amine group and thiazole nitrogen, and the thioether sulphur are preferential sites to bind metal ions. Pd(II) and Pt(II) derivatives of famotidine have been synthesized and studied structurally. There is evidence that the palladium complex is a monomer while the platinum complex forms a dimer. Due to the interesting structure of the platinum complex several assays have examined the possible antitumour activity. Changes in DNA conformation induced by both complexes have been detected by CD, interstrand crosslinking interactions and electrophoretic mobility, but studies of the cytotoxicity of the platinum compound with U937 human leukemia cells and HeLA human womb carcinoma cells show only a small antiproliferative potential.  相似文献   

19.
The effect of selected 10 antibiotics and their complexes with Cu(2+) ions on the catalytic activity of the trans-acting antigenomic delta ribozyme was investigated. Sisomicin, vancomycin, and actinomycin D displayed weak inhibitory properties. However, much stronger effects were detected with complexes of these antibiotics with Cu(2+) ions. The strongest inhibition was observed with actinomycin D-Cu(2+) complex, for which the calculated K(i) value was reduced ca. 35-fold upon metal ion complexation. We postulate that the antibiotic-Cu(2+) complexes are guided to the ribozyme metal ion binding site(s) presumably displacing the catalytically important metal ion(s). Moreover, we assume that, once positioned in appropriate distances to RNA phosphate groups and bases, the coordinated Cu(2+) ions become positively charged factors that enhance the affinity of the antibiotics to the ribozyme. These observations indicate that coordination of metal ions to antibiotics substantially changes their properties which might also have a biological relevance inside the cell.  相似文献   

20.
A series of Pt(II) complexes containing 1,2-diphenylethylenediamine (stien) isomers were synthesized and tested for their antitumor activity against leukemia L1210. Among the Pt(II) complexes examined water-soluble Pt(II) complexes with sulfate, nitrate and D-glucuronate ions as leaving groups exhibited relatively high antitumor activity. Furthermore, the interactions between calf-thymus DNA and Pt(SO4) (stein) complexes were investigated by means of circular dichroism spectrometry. Dichroism enhancements observed in the interaction between DNA and Pt(SO4) (stien) complexes were analysed to be contributable to two factors: (1) vicinal effects of DNA on the d-d transitions of Pt(II) ions and (2) conformational changes of DNA caused by the coordination of cis-configurational Pt(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号