首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The flavonol quercetin, a phloretin analog, inhibits transport of 2-deoxyglucose and 3-O-methylglucose in a cultured human diploid fibroblast. This inhibition is related to transport itself and not to the reported effects of flavonoids on membrane-bound ATPases. From concentration-inhibition curves at several pH's we conclude that uncharged (acid) quercetin (pK=7.65) is the inhibitory form of the molecule (K I =10m). Quercetin, unlike phloretin, is rapidly degraded in 0.1n NaOH; the degradation products are weakly inhibitory to hexose transport.  相似文献   

2.
The Antarctic bacterial isolate Sphingomonas sp. strain Ant 17 utilized a wide range of L-isomer amino acids as the sole carbon and energy source for growth. The pH and temperature optima for growth on amino acids were pH 7.0 and 15°C, respectively. Growth on serine and tryptophan was inhibited by uncouplers and inhibitors of oxidative phosphorylation, but not by monensin, a Na+/H+ antiporter, suggesting that sodium gradients were not specifically required for growth on these amino acids. Serine transport was via a high-affinity (apparent Km of 8 M) permease specific for both the L- and D-isomer. Tryptophan transport exhibited biphasic kinetics with both high-affinity (apparent Km of 2.5 M) and low-affinity (non-saturable) uptake systems detected. The high-affinity system was specific for L-tryptophan, L-tyrosine, and L-phenylalanine whereas the low-affinity permease was specific for L-tryptophan and L-phenylalanine, but not L-tyrosine. Neither orthovanadate nor sodium arsenate, inhibitors of ATP-dependent permeases, had any significant inhibitory effect on the rate of serine and tryptophan transport. The protonophore carbonyl cyanide m-chlorophenylhydrazone completely abolished serine and tryptophan transport; maximum rates of solute uptake were observed at acidic pH values (pH 4.0–5.0) for both amino acids. These results suggest that an electrochemical potential of protons is the driving force for serine and tryptophan transport by Ant 17. These high-affinity proton-driven permeases function over environmental extremes (e.g. broad temperature and pH range) that are likely to prevail in the natural habitat of this bacterium.  相似文献   

3.
The mutant R33 of the obligatory aerobic yeastRhodotorula glutinis exhibited a defect ind-glucose uptake. Detailed kinetic studies ofd-glucose andd-fructose transport in wild-type and mutant strains provided evidence for the existence in the plasma membrane of a carrier specific for fructose. The transport ofd-fructose in the mutant exhibited saturation kinetics up to 1 mmol/Ld-fructose; at higher concentrations the rate ofd-fructose uptake decreased. In the wild-type strain biphasicd-fructose uptake kinetics were observed; the low-affinity component was not found in the mutant, but the high-affinity transport system persisted. During the exponential phase of growth (ond-glucose) the high-affinityd-fructose system was repressed in the wild-type strain. Mutual competition betweend-fructose andd-glucose as well as the pH dependence of transport of the two hexoses further supported the following conclusion: In the wild-type strain,d-fructose is taken up both by the specific fructose carrier (K T=0.22 mmol/L) and the glucose carrier (K T=9.13 mmol/L). The former does not translocated-glucose, the latter is damaged by the mutation. Finally H+ co-transport and plasma membrane depolarization induced by the onset ofd-fructose transport indicated that the fructose carrier is an H+ symporter.  相似文献   

4.
Zygosaccharomyces bailii possesses a constitutive malic enzyme, but only small amounts of malate are decomposed when the cells ferment fructose. Cells growing anaerobically on glucose (glucose cells) decompose malate, whereas fructose cells do not. Only glucose cells show an increase in the intracellular concentration of malate when suspended in a malate-containing solution. The transport system for malate is induced by glucose, but it is repressed by fructose. The synthesis of this transport system is inhibited by cycloheximide. Of the two enantiomers l-malate is transported preferentially. The transport of malate by induced cells is not only inhibited by addition of fructose but also inactivated. This inactivation is independent of the presence of cycloheximide. The transport of malate is inhibited by uranyl ions; various other inhibitors of transport and phosphorylation were of little influence. It is assumed that the inducible protein carrier for malate operates by facilitated diffusion. Fructose cells of Z. bailii and cells of Saccharomyces cerevisiae do not contain a transport system for malate.This research was supported in part by a grant from the Forschungsring des Deutschen Weinbaus.  相似文献   

5.
Four histidine auxotrophs of Bradyrhizobium japonicum strain USDA 122 were isolated by random transposon Tn5 mutagenesis. These mutants arose from different, single transposition events as shown by the comparison of EcoRI and XhoI-generated Tn5 flanking sequences of genomic DNA. The mutants grew on minimal medium supplemented with l-histidine or l-histidinol but failed to grow with l-histidinol phosphate. While two of the muants were symbiotically defective and did not form nodules on Glycine max cvs. Lee and Peking and on Glycine soja, the other two mutants were symbiotically competent. Reversion to prototrophy occurred at a frequency of about 10-7 on growth medium without added antibiotics, but prototrophs could not be isolated from growth medium containing 200 g/ml kanamycin and streptomycin. The prototrophic revertants formed nodules on all the soybean cultivars examined. When histidine was supplied to the plant growth medium, both nodulation deficient mutants formed effective symbioses. On histidine unamended plants, nodules were observed infrequently. Three classes of bacterial colonies were isolated from such infrequent nodules: class 1 were kanamycin resistant-auxotrophs; class 2 were kanamycin sensitive-prototrophs; and class 3 were kanamycin-sensitive auxotrophs. Our results suggest that two Tn5 insertion mutations in B. japonicum leading to histidine auxotrophy, affect nodulation in some way. These mutations are in regions that show no homology to the Rhizobium meliloti common nodulation genes.  相似文献   

6.
Two Leuconostoc oenos mutant strains unable to metabolize malic acid were differentiated by [U-14C]-labelled L-malate transport assays into a malolactic-enzyme-deficient mutant and a malate-transport-defective mutant. A mathematical analysis of the data from L-malic acid uptake at three pH values (5.2, 4.5, and 3.2) in the malolactic-enzyme-deficient strains suggest two simultaneous uptake mechanisms, presumably a carrier-mediated transport and a passive diffusion for the anionic and the undissociated forms of the acid, respectively. The apparent affinity constant (K m t) and the maximal rate (V m t) values for L-malate active transport were, 12 mM and 43 mol L-malate·mg–1·s–1, respectively. Active transport was constitutive and strongly inhibited by protonophores and by ATPase inhibitors. L-Lactic acid appeared to inhibit L-malic acid transport, suggesting an L-lactate/L-malate exchange. At pH values of 4.5 or above, the passive diffusion of L-malic acid was negligible. However, at pH 3.2, the mean pH of wine, the permeability of the cells to the undissociated acid by simple diffusion could represent more than 50% of total L-malic acid uptake, with a diffusion constant (K D) of 0.1 s–1. Correspondence to: C. Divies  相似文献   

7.
Zinc is an essential trace element necessary to life. This metal may exert some of its physiological effects by acting directly on cellular membranes, either by altering permeability or by modulating the activity of membrane-bound enzymes. On the other hand, calcium is an essential element in a wide variety of cellular activities. The aim of the present work was to study a possible interaction between zinc and calcium on intestinal transport ofd-galactose in jejunum of rabbit in vitro. In media with Ca2+, when ZnCl2 was present at 0.5 or 1 mM, zinc was found to reduce thed-galactose absorption significantly. In Ca2+-free media, where CaCl2 was omitted and replaced isotonically with choline chloride, the sugar transport was not modified by zinc. Verapamil at 10−6 M (blocking mainly Ca2+ transport) did not modify the inhibitory effect of zinc ond-galactose transport. When 10−6 M of A 23187 (Ca2+-specific ionophore) was added with/without Ca2+ to the media, ZnCl2 produced no change in sugar transport. These results could suggest a possible interaction of calcium and zinc for the same chemical groups of membrane, which could affect the intestinal absorption of sugars.  相似文献   

8.
By using d-glucose, d-xylose, d-galactose and d-fructose in the strictly aerobic yeast Rhodotorula glutinis and by comparing the half-saturation constants with inhibition constants the yeast was shown to possess a single common system for d-xylose and d-galactose (K m's and K i's all between 0.5 and 1.1 mM) but another distinct transport system for d-fructose. The transport of d-glucose has a special position in that glucose blocks apparently allotopically all the other systems observed although it uses at least one of them for its own transport. The different character of d-glucose uptake is underlined by its relative independence of pH (its K m is completely pH-insensitive) in contrast with all other sugars. At low concentrations, all sugars show mutual positive cooperativity in uptake, suggesting at least two transport sites plus possibly a modifier site on the carrier.  相似文献   

9.
Summary Na and Cl fluxes and short-circuit current (I sc) in rabbit ileum have been studied as a function of ionic concentrations in HCO3-free solutions. Both net Na flux (J net Na ) andI sc show similar saturation functions of [Na] at fixed [Cl]. They show no significant difference between zero and 112mm Na but at 140mm NaI sc is significantly greater than theJ net Na . Net Cl transport, secretion, is observed only at 140mm Na and is approximately equivalent to the difference between theI sc andJ net Na . The transcellular mucosa-to-serosa Na fluxes measured at 140 and 70mm Na do not differ significantly from the correspondingI sc. The net Cl flux varies with [Cl] at fixed [Na] whileI sc is virtually not affected by [Cl]. These results suggest that the absorptive Na transport process is electrogenic and responsible for theI sc and that the secretory fluxes of Na and Cl are coupled, require high [Na], vary with [Cl], and do not contribute toI sc. K-free solution abolishes theI sc after a prolonged lag. Finally, the effect of a low resistance shunt pathway on active Na absorption is examined with a four-compartment model.Deceased (October 16, 1974).  相似文献   

10.
Growth ofSerratia marcescens was not inhibited by high concentrations ofL-lysine and its structural analogues,L-canavanine and S-(2-aminoethyl)-L-cysteine (thialysine). This insensitivity was not caused by deficient transport of basic amino acids, unlike in mutant strains ofEscherichia coli having the same properties. The tested strains showed a lack of regulation at the aspartate kinase level towardL-lysine and thialysine. The data indicate great intraspecific variability for aspartate kinase regulation inS. marcescens.  相似文献   

11.
Astrocytes possess a concentrativel-ascorbate (vitamin C) uptake mechanism involving a Na+-dependentl-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellularl-ascorbate on the activity of this transport system. Initial rates ofl-ascorbate uptake were measured by incubating primary cultures of rat astrocytes withl-[14C]ascorbate for 1 min at 37°C. We observed that the apparent maximal rate of uptake (V max) increased rapidly (<1 h) when cultured cells were deprived ofl-ascorbate. In contrast, there was no change in the apparent affinity of the transport system forl-[14C]ascorbate. The increase inV max was reversed by addition ofl-ascorbate, but notD-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures withl-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.  相似文献   

12.
Sugar substrates which depress the intracellular level of inorganic phosphate in baker's yeast (d-glucose,d-fructose,d-mannose, sucrose, as well as maltose andd-galactose after appropriate induction) also make transmembrane flux of phosphate anions possible. Acetate and ethanol, although readily oxidized, as well as nonmetabolized sugars, do not produce the effect. Phosphate uptake in whole cells (but not in protoplasts) is accelerated by preincubation with substrate either aerobically or anaerobically but the actual presence of substrate in the incubation medium is required for transport to take place. Starved cells take up phosphate from the medium with aK m of 3mm, the half-activation concentration by glucose being 18mm, the amount taken up being constant under given conditions (40 μmol/g dry wt. here). Phosphate-rich cells lose phosphate to the medium in the presence of a suitable substrate. The uptake process is characterized by an activation energy of 13400 cal/mol at 10−6 m phosphate and of 9400 cal/mol at 10−3 m phosphate. The process shows two optima at pH 5.0 and 7.0. A short-lived intermediate of fermentative sugar metabolism is postulated as essential for the translocation of phosphate across the yeast membrane.  相似文献   

13.
Summary A 0.2 M mixture of L-leucine and L-lysine, a pair of amino acids which Machlis (1969) had shown could attract the zoospores of Allomyces in much lower concentrations, was found to immobilize zoospores by stopping flagellar motion. While the age of the spores does not affect the response to the amino acid mixture, the time for 100% immobilization does increase with increasing numbers of spores. Viability of the spores is not altered by treatment with the mixture of L-leucine and L-lysine and subsequent germling development is highly synchronized.Several other amino acid mixtures had a similar effect upon the Allomyces' flagellum. Indeed, L-lysine by itself seems to be the most effective compound tested. Immobilization of flagella in other fungi, algae, and one protozoan was also caused by treatment with L-leucine and L-lysine. Nothing is known of the mechanism of action of this amino acid treatment.  相似文献   

14.
In the facultatively anaerobic yeastSaccharomyces cerevisiae the uptake rate and the accumulation ratio of 2-aminoisobutyric acid was decreased by some 30% by Fenton's reagent (FR), a powerful source of OH… radicals. Likewise, the uptake of glutamic acid, leucine and arginine was diminished. The mediated diffusion of 6-deoxy-d-glucose was not affected. The H+ symport of maltose and trehalose was inhibited by some 40% both in the initial rate and in the accumulation ratio. FR had a dramatic inhibitory effect when present during preincubation with 50 mmol/L glucose. In the obligately aerobicLodderomyces elongisporus the uptake of all amino acids tested was decreased by 15–30%, that of 6-deoxy-d-glucose by about 10%. The initial rates of uptake of maltose and trehalose were depressed by FR by 40% and the acceleration of uptake observed after 8 min of incubation, was abolished by FR completely. Acidification rate of the external medium byS. cerevisiae in the presence of glucose or galactose was enhanced three-fold, that after subsequently added K+ was substantially decreased. FR appears to have a dual effect on sugar and amino acid transport processes in yeast: (1) it blocks carrier protein synthesis, (2) it inhibits the source of energy for transport. It does not appreciably affect the carrier proteins themselves.  相似文献   

15.
Bacteria accumulate high amounts of potassium in the cytoplasm. For studying transport of K+ (with86Rb as a marker) in bacteria (Staphylococcus aureus 17810S), the cells were depleted of the internal K+ pool by a DNP treatment. Kinetics and energetics of86Rb transport was assayed with glucose as an exogenous energy source. It was shown that86Rb uptake proceededvia a low affinity K+ transport system with an apparent,K m of 2.3 mmol/L Rb+. Studies with the lipophilic cation TPP+ (tetraphenylphosphonium), the protonophore CCCP (carbonyl cyanide 3-chlorophenylhydrazone) and inhibitors (HQNO-2-heptyl-4-hydroxyquinoline N-oxide; iodoacetate) indicated that86Rb transport was driven by Δψ (membrane potential) generatedvia the respiratory chain. The effect of Cd2+ on86Rb transport was assayed with two energy donors—glucose andL-lactate. It was found that Cd2+ strongly inhibited Δψ-dependent86Kb transport energized by cadmium-sensitive glucose oxidation, but was not toxic when cadmium-insensitivel-lactate was used as an energy source. The mechanism of these differential, substrate-dependent effects of Cd2+ on86Rb transport is discussed.  相似文献   

16.
Summary Membrane vesicles obtained from the basal lateral membranes of the rat intestinal epithelium were used to study the pathways for neutral amino acid transport.In the absence of sodium there was a stereospecific uptake ofl-alanine which exhibited saturation kinetics (K m 0.73mm andV max 5.3 nmol/mg min at 22°C). The activation energy for this process was 8.1 kcal/mole between 5 and 25°C. Preloading the vesicles with alanine increased the unidirectional influx of alanine into the vesicle. Competition experiments indicated that the affinity of the sodium-independent transport system was glutamine > threonine > alanine > phenylalanine > valine > methionine > glycine > histidine > proline, N-MeAIB. These are the characteristics of the classical L transport system.External sodium increased the rate of the stereospecificl-alanine uptake. The Na-dependent flux had aK m of 0.04mm and aV max of 0.26 nmol/mg min at 22°, and an activation energy of 9.1 kcal/mole between 5 and 25°C. Competition experiments suggest the existence of three separate pathways for alanine transport in the presence of sodium. A major pathway is shared by all other amino acids tested (i.e., threonine, glutamine, methionine, phenylalanine, valine, proline and N-MeAIB). This resembles the classical A system. A second pathway is unavailable to either phenylalanine or N-MeAIB; this is reminiscent of the classical ASC system; and the third is a novel pathway which is shared by N-MeAIB but not phenylalanine.The sodium-independent and the sodium-dependent transport ofl-alanine was blocked by PCMBS and significantly inhibited by DTP and NEM. It is concluded that the sodium-independent system (the L-like system) accounts for the efflux of neutral amino acids from the epithelium to the blood during the absorption of amino acids from the gut, and that the sodium-dependent transport processes may play an important role in the supply of amino acids to the epithelium in the absence of amino acids from the gut lumen.  相似文献   

17.
Proton-linked sugar transport systems in bacteria   总被引:12,自引:0,他引:12  
The cell membranes of various bacteria contain proton-linked transport systems ford-xylose,l-arabinose,d-galactose,d-glucose,l-rhamnose,l-fucose, lactose, and melibiose. The melibiose transporter ofE. coli is linked to both Na+ and H+ translocation. The substrate and inhibitor specificities of the monosaccharide transporters are described. By locating, cloning, and sequencing the genes encoding the sugar/H+ transporters inE. coli, the primary sequences of the transport proteins have been deduced. Those for xylose/H+, arabinose/H+, and galactose/H+ transport are homologous to each other. Furthermore, they are just as similar to the primary sequences of the following: glucose transport proteins found in a Cyanobacterium, yeast, alga, rat, mouse, and man; proteins for transport of galactose, lactose, or maltose in species of yeast; and to a developmentally regulated protein of Leishmania for which a function is not yet established. Some of these proteins catalyze facilitated diffusion of the sugar without cation transport. From the alignments of the homologous amino acid sequences, predictions of common structural features can be made: there are likely to be twelve membrane-spanning -helices, possibly in two groups of six, there is a central hydrophilic region, probably comprised largely of -helix; the highly conserved amino acid residues (40–50 out of 472–522 total) form discrete patterns or motifs throughout the proteins that are presumably critical for substrate recognition and the molecular mechanism of transport. Some of these features are found also in other transport proteins for citrate, tetracycline, lactose, or melibiose, the primary sequences of which are not similar to each other or to the homologous series of transporters. The glucose/Na+ transporter of rabbit and man is different in primary sequence to all the other sugar transporters characterized, but it is homologous to the proline/Na+ transporter ofE. coli, and there is evidence for its structural similarity to glucose/H+ transporters in Plants.In vivo andin vitro mutagenesis of the lactose/H+ and melibiose/Na+ (H+) transporters ofE. coli has identified individual amino acid residues alterations of which affect sugar and/or cation recognition and parameters of transport. Most of the bacterial transport proteins have been identified and the lactose/H+ transporter has been purified. The directions of future investigations are discussed.  相似文献   

18.
The transport rates of amino acids, ranging froml-Glu tol-Lys, uracil, adenine and sulfate and phosphate anions bySaccharomyces cerevisiae are greatly increased by preincubation withd-glucose in a nongrowth medium when ade novo synthesis of proteins takes place. In addition, some substrates, especially the inorganic anions, require the presence of glucose during their transport. This requirement has to do both with ongoing protein synthesis and degradation, as well as with providing energy and/or activating the plasma membrane H+-ATPase which supplies the protons to the H+ symports studied here.  相似文献   

19.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

20.
Membrane vesicles from the malolactic bacterium Leuconostoc oenos were obtained by a modified version of the procedure of Kaback [Methods Enzymol 22:99–120 (1971)]. Protoplasts were produced at frequencies greater than 95% by a method entailing mutanolysis digestion and osmotic shock. Glycerol or polyethyleneglycol 600 was required as an osmotic stabilizer while the use of sucrose prevented closed vesicle formation during osmotic shock. The membrane vesicles retained their functional properties and accumulated l-malic acid in response to an ATPase-induced proton gradient across the membrane of ATP-loaded vesicles. l-Malate uptake was strongly inhibited by dicyclohexylcarbodiimide, a specific inhibitor of membrane-bound ATPase. These data support the possibility of a pH-dependent transport of l-malate. Vesicles not loaded with ATP were slightly permeable to malic acid with an initial uptake rate (0.5 nmol·l–1·s–1) similar to the diffusion rate obtained previously in a L. oenos malate-transport-deficient strain. These results confirm two simultaneous uptake mechanisms in L. oenos, a permease-mediated transport and a passive diffusion for the anionic and the undissociated forms of l-malic acid respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号