首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Single-strand-specific nuclease S1 was employed as a structural probe to confirm locations of unpaired nucleotide bases in 5S rRNAs purified from prokaryotic species of rRNA superfamily I. Limited nuclease S1 digests of 3- and 5-end-labeled [32P]5S rRNAs were electrophoresed in parallel with reference endoribonuclease digests on thin allel with reference endoribonuclease digests on thin sequencing gels. Nuclease S1 primary hydrolysis patterns were comparable for 5S rRNAs prepared from all 11 species examined in this study. The locations of base-paired regions determined by enzymatic analysis corroborate the general features of the proposed universal five-helix model for prokaryotic 5S rRNA, although the results of this study suggest a significant difference between prokaryotic and eukaryotic 5S rRNAs in the evolution of helix IV. Furthermore, the extent of base-pairing predicted by helix IV needs to be reevaluated for eubacterial species. Clipping patterns in helices II and IV appear to be consistent with a secondary structural model that undergoes a conformational rearrangement between two (or more) structures. Primary clipping patterns in the helix II region, obtained by S1 analysis, may provide useful information concerning the tertiary structure of the 5S rRNA molecule.  相似文献   

2.
J H Kim  A G Marshall 《Biopolymers》1992,32(9):1263-1270
The structures of the helices II-III region and the helix IV region of B. megaterium 5S rRNA have been examined by means of energy minimization and molecular dynamics calculations. Calculated distances between neighboring hydrogen-bonded imino protons in helices II, III, and IV were between 3.5 and 4.5 A. The overall axis for the helices II-III region is warped rather than straight. Formation of additional Watson-Crick base pairs in loop B and loop C was not evident from the atomic positions calculated by molecular dynamics. Bases in loop C are well stacked, showing no significant change during dynamics. Bulge migration in helix III does not seem to be possible; the helices II-III region prefers one conformation. Helix II is more stable than helix III. Five base pairs in helix IV were sufficiently stable to establish that helix IV is terminated by a hairpin loop of three nucleotides. U87 protrudes from loop D. Structures of the helices II-III segment and the helix IV segment of B. megaterium 5S rRNA obtained by molecular dynamics were generally consistent with the solution structure inferred from high-field proton nmr spectroscopy.  相似文献   

3.
The VS ribozyme comprises five helical segments (II-VI) in a formal H shape, organized by two three-way junctions. It interacts with its stem-loop substrate (I) by tertiary interactions. We have determined the global shape of the 3-4-5 junction (relating helices III-V) by electrophoresis and FRET. Estimation of the dihedral angle between helices II and V electrophoretically has allowed us to build a model for the global structure of the complete ribozyme. We propose that the substrate is docked into a cleft between helices II and VI, with its loop making a tertiary interaction with that of helix V. This is consistent with the dependence of activity on the length of helix III. The scissile phosphate is well placed to interact with the probable active site of the ribozyme, the loop containing A730.  相似文献   

4.
The conformation of Escherichia coli 5 S rRNA was investigated using chemical and enzymatic probes. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate (at C(N-3) and A(N-1], with a carbodiimide derivative (at G(N-1) and U(N-3] and with kethoxal (at G(N-1, N-2]. Position N-7 of purine was probed with diethylpyrocarbonate (at A(N-7] and dimethylsulfate (at G(N-7]. Double-stranded or stacked regions were tested with RNase V1 and unpaired guanine residues with RNase T1. We also used lead(II) that has a preferential affinity for interhelical and loop regions and a high sensitivity for flexible regions. Particular care was taken to use uniform conditions of salt, magnesium, pH and temperature for the different enzymatic chemical probes. Derived from these experimental data, a three dimensional model of the 5 S rRNA was built using computer modeling which integrates stereochemical constraints and phylogenetic data. The three domains of 5 S rRNA secondary structure fold into a Y-shaped structure that does not accommodate long-range tertiary interactions between domains. The three domains have distinct structural and dynamic features as revealed by the chemical reactivity and the lead(II)-induced hydrolysis: domain 2 (loop B/helix III/loop C) displays a rather weak structure and possesses dynamic properties while domain 3 (helix V/region E/helix IV/loop D) adopts a highly structured and overall helical conformation. Conserved nucleotides are not crucial for the tertiary folding but maintain an intrinsic structure in the loop regions, especially via non-canonical pairing (A.G, G.U, G.G, A.C, C.C), which can close the loops in a highly specific fashion. In particular, nucleotides in the large external loop C fold into an organized conformation leading to the formation of a five-membered loop motif. Finally, nucleotides at the hinge region of the Y-shape are involved in a precise array of hydrogen bonds based on a triple interaction between U14, G69 and G107 stabilizing the quasi-colinearity of helices II and V. The proposed tertiary model is consistent with the localization of the ribosomal protein binding sites and possesses strong analogy with the model proposed for Xenopus laevis 5 S rRNA, indicating that the Y-shape model can be generalized to all 5 S rRNAs.  相似文献   

5.
Does 5S RNA from E. coli have a pseudoknotted structure?   总被引:5,自引:3,他引:2       下载免费PDF全文
Chemical modification and limited enzymatic hydrolysis on isolated E. coli 5S RNA have provided informations on the secondary- and tertiary structure compatible with pseudoknotted structures for the A- and B-conformers of the molecule. Changes in the accessibility and reactivity of nucleotides in loop C and at the stem of helix IV in two different 5S RNA conformers are highly suggestive for interactions between bases C35 to C37 with G105 to G107 for the A-form and C38 to U40 and A94 to G96 with additional interactions of C35, C37 with G98 and G100 for the B-form. In both cases the molecules are folded forming pseudoknots and two quasi--continuous double stranded helices with coaxial stacking. The two structures are in perfect agreement with the biochemical data concerning the stability of the molecule and the chemical reactivities of individual nucleotides of the 5S RNA A- and B-conformers.  相似文献   

6.
J H Kim  A G Marshall 《Biochemistry》1990,29(3):632-640
Three different fragments of Bacillus megaterium ribosomal 5S RNA have been produced by enzymatic cleavage with ribonuclease T1. Fragment A consists of helices II and III, fragment B contains helix IV, and fragment C contains helix I of the universal 5S rRNA secondary structure. All (eight) imino proton resonances in the downfield region (9-15 ppm) of the 500-MHz proton FT NMR spectrum of fragment B have been identified and assigned as G80.C92-G81.C91-G82.C90-A83.++ +U89-C84.G88 and three unpaired U's (U85, U86, and U87) in helix IV by proton homonuclear Overhauser enhancement connectivities. The secondary structure in helix IV of the prokaryotic loop is completely demonstrated spectroscopically for the first time in any native or enzyme-cleaved 5S rRNA. In addition, G21.C58-A20.U59-G19.C60-A18.U61 in helix II, U32.A46-G31.C47-C30.G48-C29.G49 in helix III, and G4.C112-G5.C111-U6.G110 in the terminal stem (helix I) have been assigned by means of NOE experiments on intact 5S rRNA and its fragments A and C. Base pairs in helices I-IV of the universal secondary structure of B. megaterium 5S RNA are described.  相似文献   

7.
The structures of the two stable conformers of Escherichia coli 5 S RNA, the and B form, were compared. Information about the structures were obtained using the methods of limited enzymatic hydrolysis and chemical modification of accessible nucleotides. Base-specific modifications were performed for adenosines and cytidines using diethylpyrocarbonate and dimethylsulfate in combination with a strand-scission reaction at the modified site. Base-specific (RNase T1) as well as conformation-specific (nuclease S1, cobra venom nuclease) enzymes were employed for the limited enzymatic hydrolysis. Clear differences in the accessibility of the two 5 S RNA conformers to the enzymes and the chemical reagents were established and the regions with altered reactivities were localized in the 5 S RNA structure. The results are consistent with the disruption of the secondary structural interactions in helix II and partly in helices III and IV during the transition from the A to the B form. (The numbering of the helices is according to the generally accepted Fox and Woese model.) In addition some regions presumably involved in the tertiary structure are distorted. There is evidence, however, for the new formation of structural regions between two distant sites in the 5 S RNA B form. The results enable us to refine the existing 5 S RNA A-form model and provide insight into the structural dynamics that lead to the formation of the 5 S RNA B form.  相似文献   

8.
The lactose transport protein (LacS) of Streptococcus thermophilus belongs to a family of transporters in which putative alpha-helices II and IV have been implicated in cation binding and the coupled transport of the substrate and the cation. Here, the analysis of site-directed mutants shows that a positive and negative charge at positions 64 and 71 in helix II are essential for transport, but not for lactose binding. The conservation of charge/side-chain properties is less critical for Glu-67 and Ile-70 in helix II, and Asp-133 and Lys-139 in helix IV, but these residues are important for the coupled transport of lactose together with a proton. The analysis of second-site suppressor mutants indicates an ion pair exists between helices II and IV, and thus a close approximation of these helices can be made. The second-site suppressor analysis also suggests ion pairing between helix II and the intracellular loops 6-7 and 10-11. Because the C-terminal region of the transmembrane domain, especially helix XI and loop 10-11, is important for substrate binding in this family of proteins, we propose that sugar and proton binding and translocation are performed by the joint action of these regions in the protein. Indeed, substrate protection of maleimide labeling of single cysteine mutants confirms that alpha-helices II and IV are directly interacting or at least conformationally involved in sugar binding and/or translocation. On the basis of new and published data, we reason that the helices II, IV, VII, X, and XI and the intracellular loops 6-7 and 10-11 are in close proximity and form the binding sites and/or the translocation pathway in the transporters of the galactosides-pentosides-hexuronides family.  相似文献   

9.
Marlatt NM  Shaw GS 《Biochemistry》2007,46(25):7478-7487
S100B is a 21 kDa member of the S100 calcium-binding protein family. This protein comprises a symmetric homodimer with each subunit having two EF-hands arranged from four alpha-helices (I-IV). S100B binds calcium and undergoes a conformation change leading to the exposure of hydrophobic surface residues that enable the protein to interact with biological target molecules. The most significant structural change that occurs during calcium binding results in a change in the orientation of helix III with respect to helices II and IV. In this work, the calcium-sensitive conformational change has been studied by utilizing fast 1H-15N HSQC experiments and water-transfer methods to follow the amide exchange in apo-S100B and Ca-S100B at 35 degrees C. In apo-S100B, the protection factors are 2-3 orders of magnitude lower for helix III than for helix I, II, or IV. In addition, the exchange stability measured here for the dimer interface helices (I, I', IV, and IV'), in the absence of calcium, is similar to the stability obtained from chemical denaturation experiments. When calcium binds, significant decreases in the protection factors for helices I and IV indicate a modification in the stability of the dimer interface has occurred. In contrast, helix II protection factors increase slightly, which is consistent with a decreased level of surface exposure of this helix. These data have been compared with those of the monomeric S100 protein, calbindin D9k, to illustrate that upon calcium binding there is a balance maintained between the amide exchange rates in helices II and III, although largely the rates are dissimilar for each of these proteins. This distinguishing feature may be important for the calcium-induced conformational change in S100B, where calcium binding is transmitted to the dimer-forming helices.  相似文献   

10.
Sixteen single-cysteine substitution mutants of rhodopsin were prepared in the sequence 306-321 which begins in transmembrane helix VII and ends at the palmitoylation sites at 322C and 323C. The substituted cysteine residues were modified with a selective reagent to generate a nitroxide side chain, and the electron paramagnetic resonance spectrum of each spin-labeled mutant was analyzed in terms of residue accessibility and mobility. The periodic behavior of these parameters along the sequence indicated that residues 306-314 were in a regular alpha-helical conformation representing the end of helix VII. This helix apparently extends about 1.5 turns above the surface of the membrane, with one face in strong tertiary interaction with the core of the protein. For the segment 315-321, substituted cysteine residues at 317, 318, 320, and 321 had low reactivity with the spin-label reagent. This segment has the most extensive tertiary interactions yet observed in the rhodopsin extra-membrane sequences at the cytoplasmic surface. Previous studies showed the spontaneous formation of a disulfide bond between cysteine residues at 65 and 316. This result indicates that at least some of the tertiary contacts made in the 315-321 segment are with the sequence connecting transmembrane helices I and II. Photoactivation of rhodopsin produces changes in structure detected by spin labels at 306, 313, and 316. The changes at 313 can be accounted for by movements in the adjacent helix VI.  相似文献   

11.
Capping interactions associated with specific sequences at or near the ends of alpha-helices are important determinants of the stability of protein secondary and tertiary structure. We investigate here the role of the helix-capping motif Ser-X-X-Glu, a sequence that occurs frequently at the N termini of alpha helices in proteins, on the conformation and stability of the GCN4 leucine zipper. The 1.8 A resolution crystal structure of the capped molecule reveals distinct conformations, packing geometries and hydrogen-bonding networks at the amino terminus of the two helices in the leucine zipper dimer. The free energy of helix stabilization associated with the hydrogen-bonding and hydrophobic interactions in this capping structure is -1.2 kcal/mol, evaluated from thermal unfolding experiments. A single cap thus contributes appreciably to stabilizing the terminated helix and thereby the native state. These results suggest that helix capping plays a further role in protein folding, providing a sensitive connector linking alpha-helix formation to the developing tertiary structure of a protein.  相似文献   

12.
CD39 can exist in at least two distinct functional states depending on the presence and intact membrane integration of its two transmembrane helices. In native membranes, the transmembrane helices undergo dynamic rotational motions that are required for enzymatic activity and are regulated by substrate binding. In this study, we show that bilayer mechanical properties regulate conversion between the two enzymatic functional states by modulating transmembrane helix dynamics. Alteration of membrane properties by insertion of cone-shaped or inverse cone-shaped amphiphiles or by cholesterol removal switches CD39 to the same enzymatic state that removal or solubilization of the transmembrane domains does. The same membrane alterations increase the propensity of both transmembrane helices to rotate within the packed structure, resulting in a structure with greater mobility but not an altered primary conformation. Membrane alteration also abolishes the ability of the substrate to stabilize the helices in their primary conformation, indicating a loss of coupling between substrate binding and transmembrane helix dynamics. Removal of either transmembrane helix mimics the effect of membrane alteration on the mobility and substrate sensitivity of the remaining helix, suggesting that the ends of the extracellular domain have intrinsic flexibility. We suggest that a mechanical bilayer property, potentially elasticity, regulates CD39 by altering the balance between the stability and flexibility of its transmembrane helices and, in turn, of its active site.  相似文献   

13.
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.  相似文献   

14.
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant.  相似文献   

15.
Wang Q  Kaback HR 《Biochemistry》1999,38(10):3120-3126
Coexpression of lacY gene fragments encoding the first two transmembrane domains and the remaining 10 transmembrane domains complement in the membrane and catalyze active lactose transport [Wrubel, W., Stochaj, U., et al. (1990) J. Bacteriol. 172, 5374-5381]. Accordingly, a plasmid encoding contiguous, nonoverlapping permease fragments with a discontinuity in the cytoplasmic loop between helices II and III (loop II/III) was constructed (N2C10 permease). When Phe27 (helix I) is replaced with Cys, cross-linking is observed with two native Cys residues, Cys148 (helix V) and Cys355 (helix XI). Cross-linking of a Cys residue at position 27 to Cys148 occurs with N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), with N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A), or with 1,6-bis(maleimido)hexane (BMH; flexible 16 A). On the other hand, with the Phe27-->Cys/Cys355 pair, cross-linking is observed with p-PDM or BMH but not o-PDM. In neither case is cross-linking observed with iodine. It is suggested that a Cys residue at position 27 is within 6-10 A from Cys148 and about 10 A from Cys355. The results provide evidence for proximity between helix I and helices V or XI in the tertiary structure of the permease. In addition, the findings are consistent with other results [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] indicating that Glu126 (helix IV) and Arg144 (helix V) are within the membrane, rather than at the membrane-water interface on the cytoplasmic face.  相似文献   

16.
Higher order structure of chloroplastic 5S ribosomal RNA from spinach   总被引:4,自引:0,他引:4  
The secondary and tertiary structure of chloroplastic 5S ribosomal RNA from spinach was investigated by the use of several chemical and enzymatic structure probes. The four bases were monitored at one of their Watson-Crick base-pairing positions with dimethyl sulfate [at A(N1) and C(N3)] and with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate [at G(N1) and U(N3)]. Position N7 of purines was probed with diethyl pyrocarbonate (adenines) and with dimethyl sulfate (guanines). Ethylnitrosourea was used to probe phosphate involved in tertiary interaction or in cation coordination. In order to estimate the degree of stability of helices, the various chemical reagents were employed under "native" conditions (300 mM KCl and 20 mM magnesium at 37 degrees C), under "semidenaturing" conditions [1 mM ethylenediaminetetraacetic acid (EDTA) at 37 degrees C], and under denaturing conditions (1 mM EDTA at 90 degrees C). Unstructured regions were also tested with single-strand-specific nucleases T1, U2, and S1 and double-stranded or stacked regions with RNase V1 from cobra Naja naja oxiana venom. The results confirm the existence of the five helices and the two external loops proposed in the consensus model of 5S rRNA. However, the regions depicted as unpaired internal loops appear to be folded into a more complex conformation. A three-dimensional model derived from the present data and graphic modeling for a region encompassing helix IV, helix V, loop D, and loop E (nucleotides 70-110) is proposed. Nucleotides in the so-called loop E (73-79/100-106) display unusual features: Noncanonical base pairs (A-A and A-G) are formed, and three nucleotides (C75, U78, and U105) are bulging out. This region adopts an unwound and extended conformation that can be well suited for tertiary interactions or for protein binding. Several bases and phosphates candidate for the tertiary folding of the RNA were also identified.  相似文献   

17.
The secondary and tertiary structures of Xenopus oocyte and somatic 5S rRNAs were investigated using chemical and enzymatic probes. The accessibility of both RNAs towards single-strand specific nucleases (T1, T2, A and S1) and a helix-specific ribonuclease from cobra venom (RNase V1) was determined. The reactivity of nucleobase N7, N3 and N1 positions towards chemical probes was investigated under native (5 mM MgCl2, 100 mM KCl, 20 degrees C) and semi-denaturing (1 mM EDTA, 20 degrees C) conditions. Ethylnitrosourea was used to identify phosphates not reactive towards alkylation under native conditions. The results obtained confirm the presence of the five helical stems predicted by the consensus secondary structure model of 5S rRNA. The chemical reactivity data indicate that loops C and D are involved in a number of tertiary interactions, and loop E folds into an unusual secondary structure. A comparison of the data obtained for the two types of Xenopus 5S rRNA indicates that the conformations of the oocyte and somatic 5S rRNAs are very similar. However, the data obtained with nucleases under native conditions, and chemical probes under semi-denaturing conditions, reveal that helices III and IV in the somatic 5S rRNA are less stable than the same structures in oocyte 5S rRNA. Using chimeric 5S rRNAs, it was possible to demonstrate that the relative resistance of oocyte 5S rRNA to partial denaturation in 4 M urea is conferred by the five oocyte-specific nucleotide substitutions in loop B/helix III. In contrast, the superior stability of oocyte 5S rRNA in the presence of EDTA is related to a single C substitution at position 79.  相似文献   

18.
Peptides corresponding to excised alpha-helical segments of natural proteins can spontaneously form helices in solution. However, peptide helices are usually substantially less stable in solution than in the structural context of a folded protein, because of the additional interactions possible between helices in a protein. Such interactions can be thought of as coupling helix formation and tertiary contact formation. The relative energetic contributions of the two processes to the total energy of the folded state of a protein is a matter of current debate. To investigate this balance, an extended helix-coil model (XHC) that incorporates both effects has been constructed. The model treats helix formation with the Lifson-Roig formalism, which describes helix initiation and propagation through cooperative local interactions. The model postulates an additional parameter representing participation of a site in a tertiary contact. In the model, greater helix stability can be achieved through combinations of these short-range and long-range interactions. For instance, stronger tertiary contacts can compensate for helices with little intrinsic stability. By varying the strength of the nonlocal interactions, the model can exhibit behavior consistent with a variety of qualitative models describing the relative importance of secondary and tertiary structure. Moreover, the model is explicit in that it can be used to fit experimental data to individual peptide sequences, providing a means to quantify the two contributions on a common energetic basis.  相似文献   

19.
As sensors for structure at the cytoplasmic face of rhodopsin, single-cysteine substitution mutants have been previously studied in the regions connecting helices III and IV and helices V and VI. In this paper we report on single-cysteine substitution mutants at amino acid positions 306-321, comprising the cytoplasmic sequence between helix VII and the palmitoylation sites in rhodopsin. The cysteine opsin mutants were expressed in COS-1 cells and on treatment with 11-cis-retinal all formed the characteristic rhodopsin chromophore. Cysteines at positions 306-316 and 319 reacted in the dark with the thiol-specific reagent 4, 4'-dithiodipyridine (4-PDS) but showed a wide variation in reactivity. Cysteines at positions 317, 318, 320, and 321 showed no reaction with 4-PDS. The mutants on illumination also showed wide variations in activating GT. The mutant Y306C showed almost no GT activation, I307C and N310C were poor, and the activity of the mutants M309C, F313C, and M317C was also reduced relative to WT. The results suggest that the region comprising amino acids 306-321 is a part of a tertiary structure and that specific amino acids in this region on light-activation participate in the interaction with GT.  相似文献   

20.
S100A11 is a homodimeric EF-hand calcium binding protein that undergoes a calcium-induced conformational change and interacts with the phospholipid binding protein annexin I to coordinate membrane association. In this work, the solution structure of apo-S100A11 has been determined by NMR spectroscopy to uncover the details of its calcium-induced structural change. Apo-S100A11 forms a tight globular structure having a near antiparallel orientation of helices III and IV in calcium binding site II. Further, helices I and IV, and I and I', form a more closed arrangement than observed in other apo-S100 proteins. This helix arrangement in apo-S100A11 partially buries residues in helices I (P3, E11, A15), III (V55, R58, M59), and IV (A86, C87, S90) and the linker (A45, F46), which are required for interaction with annexin I in the calcium-bound state. In apo-S100A11, this results in a "masked" binding surface that prevents annexin I binding but is uncovered upon calcium binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号