首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research.  相似文献   

2.
In the majority of congenital disorders of glycosylation, the assembly of the glycan precursor GlcNAc2Man9Glc3 on the polyprenol carrier dolichyl-pyrophosphate is compromised. Because N-linked glycosylation is essential to life, most types of congenital disorders of glycosylation represent partial losses of enzymatic activity. Consequently, increased availability of substrates along the glycosylation pathway can be beneficial to increase product formation by the compromised enzymes. Recently, we showed that increased dolichol availability and improved N-linked glycosylation can be achieved by inhibition of squalene biosynthesis. This review summarizes the current knowledge on the biosynthesis of dolichol-linked glycans with respect to deficiencies in N-linked glycosylation. Additionally, perspectives on therapeutic treatments targeting dolichol and dolichol-linked glycan biosynthesis are examined.  相似文献   

3.
Prion protein glycosylation   总被引:4,自引:1,他引:3  
The transmissible spongiform encephalopathies (TSE), or prion diseases are a group of transmissible neurodegenerative disorders of humans and animals. Although the infectious agent (the 'prion') has not yet been formally defined at the molecular level, much evidence exists to suggest that the major or sole component is an abnormal isoform of the host encoded prion protein (PrP). Different strains or isolates of the infectious agent exist, which exhibit characteristic disease phenotypes when transmitted to susceptible animals. In the absence of a nucleic acid genome it has been hard to accommodate the existence of TSE strains within the protein-only model of prion replication. Recent work examining the conformation and glycosylation patterns of disease-associated PrP has shown that these post-translational modifications show strain-specific properties and contribute to the molecular basis of TSE strain variation. This article will review the role of glycosylation in the susceptibility of cellular PrP to conversion to the disease-associated conformation and the role of glycosylation as a marker of TSE strain type.  相似文献   

4.
Some genetic defects in protein glycosylation can be treated effectively with dietary supplements of monosaccharides. An easy screening test and non-toxic therapy for potentially lethal disorders should encourage physicians to search for more patients with glycosylation disorders. It should also stimulate research on the occurrence and availability of monosaccharides used for glycoconjugate synthesis and for vertebrate models to study their utilization.  相似文献   

5.
Congenital Disorders of Glycosylation (CDG) are an expanding and complex group of rare genetic disorders caused by defects in the glycosylation of proteins and lipids. The genetic spectrum of CDG is extremely broad with mutations in over 140 genes leading to a wide variety of symptoms ranging from mild to severe and life-threatening. There has been an expansion in the genetic complexity of CDG in recent years. More specifically several examples of alternate phenotypes in recessive forms of CDG and new types of CDG following an autosomal dominant inheritance pattern have been identified. In addition, novel genetic mechanisms such as expansion repeats have been reported and several already known disorders have been classified as CDG as their pathophysiology was better elucidated. Furthermore, we consider the future and outlook of CDG genetics, with a focus on exploration of the non-coding genome using whole genome sequencing, RNA-seq and multi-omics technology.  相似文献   

6.
Protein N-glycosylation is a widely occurring and vital posttranslational modification in mammalian cells. Although the molecular machinery that is involved in the biosynthesis of these glycoconjugates has been largely identified, the recent discovery of a family of rare inborn diseases in which glycoproteins are abnormally glycosylated has both changed some of our ideas concerning glycoprotein biosynthesis, and given us new insights into this complex process. Advances in the diagnosis of the congenital disorders of glycosylation are well under way and mutations in several of the genes involved in the biosynthesis and maturation of N-linked glycans have been shown to underlie these diseases. By contrast, the chain of events that lead from faulty protein glycosylation to the often severe clinical presentation is an as yet unexplored aspect of these metabolic disorders, and represents a challenge for the future.  相似文献   

7.
Notch signaling is essential for cell-fate specification in metazoans, and dysregulation of the pathway leads to a variety of human diseases including heart and vascular defects as well as cancer. Glycosylation of the Notch extracellular domain has emerged as an elegant means for regulating Notch activity, especially since the discovery that Fringe is a glycosyltransferase that modifies O-fucose in 2000. Since then, several other O-glycans on the extracellular domain have been demonstrated to modulate Notch activity. Here we will describe recent results on the molecular mechanisms by which Fringe modulates Notch activity, summarize recent work on how O-glucose, O-GlcNAc, and O-GalNAc glycans affect Notch, and discuss several human genetic disorders resulting from defects in Notch glycosylation.  相似文献   

8.
Balancing N-linked glycosylation to avoid disease   总被引:4,自引:0,他引:4  
Freeze HH  Westphal V 《Biochimie》2001,83(8):791-799
Complete loss of N-glycosylation is lethal in both yeast and mammals. Substantial deficiencies in some rate-limiting biosynthetic steps cause human congenital disorders of glycosylation (CDG). Patients have a range of clinical problems including variable degrees of mental retardation, liver dysfunction, and intestinal disorders. Over 60 mutations in phosphomannomutase (encoded by PMM2) diminish activity and cause CDG-Ia. The severe mutation R141H in PMM2 is lethal when homozygous, but heterozygous in about 1/70 Northern Europeans. Another disorder, CDG-Ic, is caused by mutations in ALG6, an alpha 1,3glucosyl transferase used for lipid-linked precursor synthesis, yet some function-compromising mutations occur at a high frequency in this gene also. Maintenance of seemingly deleterious mutations implies a selective advantage or positive heterosis. One possible explanation for this is that production of infective viruses such as hepatitis virus B and C, or others that rely heavily on host N-glycosylation, is substantially inhibited when only a tiny fraction of their coat proteins is misglycosylated. In contrast, this reduced glycosylation does not affect the host. Prevalent functional mutations in rate-limiting glycosylation steps could provide some resistance to viral infections, but the cost of this insurance is CDG. A balanced glycosylation level attempts to accommodate these competing agendas. By assessing the occurrence of a series of N-glycosylation-compromising alleles in multi-genic diseases, it may be possible to determine whether impaired glycosylation is a risk factor or a major determinant underlying their pathology.  相似文献   

9.
In the last decade, over 40 inherited human glycosylation disorders were identified. Most patients have hypomorphic, rather than null alleles. The phenotypic spectrum is broad and most of the disorders affect embryonic and early post-natal development; a few appear in adult life. Some deficiencies can be treated with simple dietary sugar (monosaccharide) supplements. Here we focus on four glycosylation disorders that have been treated with supplements in patients or in model systems, primarily the mouse. Surprisingly, small differences in the amount of exogenous sugar have a major impact on the diseases in specific cells or organs while others are unaffected. The underlying mechanisms are mostly unknown, but changes in the contributions of the de novo, salvage and dietary pathways may contribute to the beneficial outcome. Clearly, the metabolic chart is not flat; all arrows are not equally robust at all points of time and space. This metabolic perspective may help explain some of these observations and guide the development of other vertebrate models of glycosylation disorders that can respond to dietary manipulation.  相似文献   

10.
Dystroglycan is an integral member of the skeletal muscle dystrophin glycoprotein complex, which links dystrophin to proteins in the extracellular matrix. Recently, a group of human muscular dystrophy disorders have been demonstrated to result from defective glycosylation of the α-dystroglycan subunit. Genetic studies of these diseases have identified six genes that encode proteins required for the synthesis of essential carbohydrate structures on dystroglycan. Here we highlight their known or postulated functions. This glycosylation pathway appears to be highly specific (dystroglycan is the only substrate identified thus far) and to be highly conserved during evolution.  相似文献   

11.
Update and perspectives on congenital disorders of glycosylation.   总被引:8,自引:0,他引:8  
H H Freeze 《Glycobiology》2001,11(12):129R-143R
Defects in nine genes of the N-linked glycosylation pathway cause congenital disorders of glycosylation (CDGs) and serious medical consequences. Although glycobiology is seldom featured in a general medical education, an increasing number of physicians are becoming acquainted with the field because it directly impacts patient diagnosis and care. Medical practice and attitudes will change in the postgenomic era, and glycobiology has an opportunity to be a cornerstone of part of that new perspective. This review of recent developments in the CDG field describes the biochemical and molecular basis of these disorders, describes successful experimental approaches, and points out a few perspectives on current problems. The broad, multisystemic presentations of these patients emphasize that glycobiology is very much a general medical science, cutting across many traditional medical specialties. The glycobiology community is well poised to provide novel perspectives for the dedicated clinicians treating both well-known and emerging human diseases.  相似文献   

12.
Congenital disorders of glycosylation (CDG) are being recognized as a rapidly growing and complex group of disorders. The pathophysiology results from depressed synthesis or remodeling of oligosaccharide moieties of glycoproteins. The ultimate result is the formation of abnormal glycoproteins affecting their structure and metabolic functions. The most thoroughly studied subset of CDG are the type I defects affecting N-glycosylation. Causal mutations occur in at least 12 different genes which encode primarily monosaccharide transferases necessary for N-glycosylation in the endoplasmic reticulum. The broad clinical presentation of these glycosylation defects challenge clinicians to test for these defects in a variety of clinical settings. The first described CDG was a phosphomannomutase deficiency (CDG-Ia). The original method used to define the glycosylation defect was isoelectric focusing (IEF) of transferrin. More recently, the use of other charge separation methods and electrospray-mass spectrometry (ESI-MS) has proven valuable in detecting type I CDG defects. By mass resolution, the under-glycosylation of transferrin is characterized as the total absence of one or both N-linked oligosaccharide. Beyond providing a new understanding of the structure of transferrin in type I CDG patients, it is adaptable to high throughput serum analysis. The use of transferrin under-glycosylation to detect the type I CDG provides limited insight into the specific site of the defect in oligosaccharide assembly since its value is constrained to observation of the final product of glycoprotein synthesis. New analytical targets and tools are converging with the clinical need for diagnosis of CDG. Defining the biosynthetic sites responsible for specific CDG phenotypes is in progress, and ten more type I defects have been putatively identified. This review discusses current methods, such as IEF and targeted proteomics using mass spectrometry, that are used routinely to test for type I CDG disorders, along with some newer approaches to define the defective synthetic sites responsible for the type I CDG defects. All diagnostic endeavors are followed by the quest for a reliable treatment. The isolated success of CDG-Ib treatment will be described with the hope that this may expand to other type I CDG disorders.  相似文献   

13.
Congenital disorders of glycosylation (CDG) constitute a group of diseases affecting N-linked glycosylation pathways. The classical type of CDG, now called CDG-I, results from deficiencies in the early glycosylation pathway for biosynthesis of lipid-linked oligosaccharide and its transfer to proteins in endoplasmic reticulum, while the CDG-II diseases are caused by defects in the subsequent processing steps. Mass spectrometry (MS) produced a milestone in CDG research, by localizing the CDG-I defect to the early glycosylation pathway in 1992. Currently, MS of transferrin, either by electrospray ionization or matrix-assisted laser desorption/ionization, plays the central role in laboratory screening of CDG-I. On the other hand, the glycopeptide analysis recently developed for site-specific glycans of glycoproteins allows detailed glycan analysis in a high throughput manner and will solve problems in CDG-II diagnosis. These techniques will facilitate studying CDG, a field now expanding to O-linked glycosylation and to acquired as well as inherited conditions that can affect protein glycosylation.  相似文献   

14.
The dystroglycanopathies are a group of inherited muscular dystrophies that have a common underlying mechanism, hypoglycosylation of the extracellular receptor α-dystroglycan. Many of these disorders are also associated with defects in the central nervous system and the eye. Defects in α-dystroglycan may also play a role in cancer progression. This review discusses the six dystroglycanopathy genes identified so far, their known or proposed roles in dystroglycan glycosylation and their relevance to human disease, and some of animal models now available for the study of the dystroglycanopathies.  相似文献   

15.
Abnormal protein glycosylation is observed in many common disorders like cancer, inflammation, Alzheimer’s disease and diabetes. However, the actual use of this information in clinical diagnostics is still very limited. Information is usually derived from analysis of total serum N-glycan profiling methods, whereas the current use of glycoprotein biomarkers in the clinical setting is commonly based on protein levels. It can be envisioned that combining protein levels and their glycan isoforms would increase specificity for early diagnosis and therapy monitoring. To establish diagnostic assays, based on the mass spectrometric analysis of protein-specific glycosylation abnormalities, still many technical improvements have to be made. In addition, clinical validation is equally important as well as an understanding of the genetic and environmental factors that determine the protein-specific glycosylation abnormalities. Important lessons can be learned from the group of monogenic disorders in the glycosylation pathway, the Congenital Disorders of Glycosylation (CDG). Now that more and more genetic defects are being unraveled, we start to learn how genetic factors influence glycomics profiles of individual and total serum proteins. Although only in its initial stages, such studies suggest the importance to establish diagnostic assays for protein-specific glycosylation profiling, and the need to look beyond the single glycoprotein diagnostic test. Here, we review progress in and lessons from genetic disease, and review the increasing opportunities of mass spectrometry to analyze protein glycosylation in the clinical diagnostic setting. Furthermore, we will discuss the possibilities to expand current CDG diagnostics and how this can be used to approach glycoprotein biomarkers for more common diseases.  相似文献   

16.
This study applied yolk immunoglobulins immunoaffinity separation and MALDI-TOF MS for clinical proteomics of congenital disorders of glycosylation (CDG) and secondary glycosylation disorders [galactosemia and hereditary fructose intolerance (HFI)]. Serum transferrin (Tf) and alpha1-antitrypsin (AAT) that are markers for CDG, were purified sequentially to obtain high-quality MALDI mass spectra to differentiate single glycoforms of the native intact glycoproteins. The procedure was found feasible for the investigation of protein macroheterogeneity due to glycosylation site underoccupancy then ensuing the characterization of patients with CDG group I (N-glycan assembly disorders). Following PNGase F digestion of the purified glycoprotein, the characterization of protein microheterogeneity by N-glycan MS analysis was performed in a patient with CDG group II (processing disorders). CDG-Ia patients showed a typical profile of underglycosylation where the fully glycosylated glycoforms are always the most abundant present in plasma with lesser amounts of partially and unglycosylated glycoforms in this order. Galactosemia and HFI are potentially fatal diseases, which benefit from early diagnosis and prompt therapeutic intervention. In symptomatic patients with galactosemia and in those with HFI, MALDI MS of Tf and AAT depicts a hypoglycosylation profile with a significant increase of underglycosylated glycoforms that reverses by dietary treatment, representing a clue for diagnosis and treatment monitoring.  相似文献   

17.
18.
Prion diseases form a group of neurodegenerative disorders with the unique feature of being transmissible. These diseases involve a pathogenic protein, called PrP(Sc) for the scrapie isoform of the cellular prion protein (PrP(C)) which is an abnormally-folded counterpart of PrP(C). Many questions remain unresolved concerning the function of PrP(C) and the mechanisms underlying prion replication, transmission and neurodegeneration. PrP(C) is a glycosyl-phosphatidylinositol-anchored glycoprotein expressed at the cell surface of neurons and other cell types. PrP(C) may be present as distinct isoforms depending on proteolytic processing (full length and truncated), topology(GPI-anchored, transmembrane or soluble) and glycosylation (non- mono- and di-glycosylated). The present review focuses on the implications of PrP(C) glycosylation as to the function of the normal protein, the cellular pathways of conversion into PrP(Sc), the diversity of prion strains and the related selective neuronal targeting.  相似文献   

19.
Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.  相似文献   

20.
Congenital disorders of glycosylation (CDG) comprise a family of inherited multisystemic disorders resulting from the deficiency of glycosylation pathways. N-glycosylation defects are classified as two biochemical and genetic established types, of which CDG-Ia is the most frequent. We performed 2-DE proteomic analysis on serum from two functional hemizygous CDG-Ia patients bearing T237M and D65Y missense changes. Comparative analysis of control/patient serum proteome allowed us to identify differential expression of 14 proteins. The most remarkable groups included proteins involved in immune response, coagulation mechanism and tissue protection against oxidative stress. The patient bearing D65Y mutation had less favourable clinical outcome and showed more abnormalities in the spot patterns, suggesting that the proteomic results might also be correlated with the phenotype of CDG patients. This study describes for the first time the differential expression of α2-macroglobulin, afamin, fibrin and fibrinogen in CDG disorder and shows how the proteomic approach might be useful for understanding its physiopathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号