首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Strong electrical stimulation (ES) of the frog glossopharyngeal (GP) efferent nerve induced slow depolarizing potentials (DPs) in taste cells under hypoxia. This study aimed to elucidate whether the slow DPs were postsynaptically induced in taste cells. After a block of parasympathetic nerve (PSN) ganglia by tubocurarine, ES of GP nerve never induced slow DPs in the taste cells, so slow DPs were induced by PSN. When Ca(2+) in the blood plasma under hypoxia was decreased to approximately 0.5 mM, the slow DPs reduced in amplitude and lengthened in latency. Increasing the normal Ca(2+) to approximately 20 mM increased the amplitude of slow DPs and shortened the latency. Addition of Cd(2+) to the plasma greatly reduced the amplitude of slow DPs and lengthened the latency. These data suggest that the slow DPs depend on Ca(2+) and Cd(2+) concentration at the presynaptic PSN terminals of taste disk. Antagonists, [D-Arg(1), D-Trp(7,9), Leu(11)]-substance P and L-703 606, of neurotransmitter substance P neurokinin(1) receptor completely blocked the slow DPs. Intravenous application of substance P induced a DP of approximately 7 mV and a reduction of membrane resistance of approximately 48% in taste cells. A nonselective cation channel antagonist, flufenamic acid, completely blocked the slow DPs. These findings suggest that the slow DPs are postsynaptically initiated in frog taste cells under hypoxia by opening nonselective cation channels on the postsynaptic membrane after substance P is probably released from the presynaptic PSN axon terminals.  相似文献   

2.
Intracellular recordings were made from the taste cells of atropinized bullfrogs while the glossopharyngeal (GP) nerve fibres were electrically stimulated. Two types of slow potential, slow hyperpolarizing potentials (HPs) and slow depolarizing potentials (DPs), were induced in the taste cells. The slow HPs appeared when the lingual capillary blood flow was kept above 0.7 mm/s, whereas the slow DPs appeared when the blood flow was slowed down below 0.7 mm/s. The membrane resistance of a taste cell increased during the generation of a slow HP, but decreased during the generation of a slow DP. The reversal potentials for the slow HPs and the slow DPs were recorded at the same membrane potential (-11 to approximately -13 mV). Activation of non-selective cation channels possibly induced the slow DP and inactivation of those channels possibly induced the slow HP in the taste cell membrane. Electrical stimulation of the GP nerve activated a population of C fibres in the nerve and possibly released neurotransmitters from the nerve terminals. Released neurotransmitters might cause modulation of the membrane conductance in taste cells that leads to generation of the slow potentials. The present data suggest that slow HPs and slow DPs evoked in the taste cells of atropinized frogs by GP nerve stimulation are induced by putative neurotransmitters in the taste disc.  相似文献   

3.
We studied the anatomical properties of parasympathetic postganglionic neurons in the frog tongue and their modulatory effects on taste cell responses. Most of the parasympathetic ganglion cell bodies in the tongue were found in extremely small nerve bundles running near the fungiform papillae, which originate from the lingual branches of the glossopharyngeal (GP) nerve. The density of parasympathetic postganglionic neurons in the tongue was 8000-11,000/mm(3) of the extremely small nerve bundle. The mean major axis of parasympathetic ganglion cell bodies was 21 microm, and the mean length of parasympathetic postganglionic neurons was 1.45 mm. Electrical stimulation at 30 Hz of either the GP nerve or the papillary nerve produced slow hyperpolarizing potentials (HPs) in taste cells. After nicotinic acetyl choline receptors on the parasympathetic ganglion cells in the tongue had been blocked by intravenous (i.v.) injection of D-tubocurarine (1 mg/kg), stimulation of the GP nerve did not induce any slow HPs in taste cells but that of the papillary nerve did. A further i.v. injection of a substance P NK-1 antagonist, L-703,606, blocked the slow HPs induced by the papillary nerve stimulation. This suggests that the parasympathetic postganglionic efferent fibers innervate taste cells and are related to a generation of the slow HPs and that substance P is released from the parasympathetic postganglionic axon terminals. When the resting membrane potential of a taste cell was hyperpolarized by a prolonged slow HP, the gustatory receptor potentials for NaCl and sugar stimuli were enhanced in amplitude, but those for quinine-HCl and acetic acid stimuli remained unchanged. It is concluded that frog taste cell responses are modulated by activities of parasympathetic postganglionic efferent fibers innervating these cells.  相似文献   

4.
When the velocity of capillary blood flow in the frog tongue declined to an intermediate range of 0.2-0.7 mm/s, the glossopharyngeal nerve stimulation induced a biphasic slow depolarizing and slow hyperpolarizing potential (HP) in taste cells. The objective of this work was to examine the generative mechanisms of the biphasic slow potentials. The biphasic slow response was always preceded by a slow depolarizing potential (DP) component and followed by a slow HP component. Intravenous injection of tubocurarine completely blocked the biphasic slow responses, suggesting that both components of the biphasic slow potentials are evoked by the parasympathetic nerve (PSN) fibers. Membrane conductance of taste cells increased during slow DPs and decreased during slow HPs. The reversal potential of either component of a biphasic slow response was the almost same value of -12 mV. An antagonist, L-703,606, for neurotransmitter substance P neurokinin(1) receptor completely blocked both components of the biphasic slow responses. An antagonist, flufenamic acid, for nonselective cation channels on the taste cell membrane completely blocked the biphasic slow responses. These results suggest that PSN-induced biphasic slow responses are postsynaptically elicited in taste cells by releasing substance P at the PSN axon terminals. It is concluded that the slow DP component may be generated by opening one type of nonselective cation channel on taste cells and that the slow HP component may be generated by closing the other type of nonselective cation channel. We discussed that a second messenger inositol 1,4,5-trisphosphate might be related to a slow DP component and another second messenger diacylglycerol might be related to a slow HP component.  相似文献   

5.
Parasympathetic nerve (PSN) innervates taste cells of the frog taste disk, and electrical stimulation of PSN elicited a slow hyperpolarizing potential (HP) in taste cells. Here we report that gustatory receptor potentials in frog taste cells are depressed by PSN-induced slow HPs. When PSN was stimulated at 30 Hz during generation of taste cell responses, the large amplitude of depolarizing receptor potential for 1 M NaCl and 1 mM acetic acid was depressed by approximately 40% by slow HPs, but the small amplitude of the depolarizing receptor potential for 10 mM quinine-HCl (Q-HCl) and 1 M sucrose was completely depressed by slow HPs and furthermore changed to the hyperpolarizing direction. The duration of the depolarizing receptor potentials depressed by slow HPs prolonged with increasing period of PSN stimulation. As tastant-induced depolarizing receptor potentials were increased, the amplitude of PSN-induced slow HPs inhibiting the receptor potentials gradually decreased. The mean reversal potentials of the slow HPs were approximately -1 mV under NaCl and acetic acid stimulations, but approximately -14 mV under Q-HCl and sucrose stimulations. This implies that when a slow HP was evoked on the same amplitude of depolarizing receptor potentials, the depression of the NaCl and acetic acid responses in taste cells was larger than that of Q-HCl and sucrose responses. It is concluded that slow HP-induced depression of gustatory depolarizing receptor potentials derives from the interaction between gustatory receptor current and slow hyperpolarizing current in frog taste cells and that the interaction is stronger for NaCl and acetic acid stimulations than for Q-HCl and sucrose stimulations.  相似文献   

6.
When the glossopharyngeal nerve (GP) in the frog was strongly stimulated electrically, slow potentials were elicited from the tongue surface and taste cells in the fungiform papillae. Injection of atropine completely blocked these slow potentials. The present and previous data indicate that the slow potentials induced in the tongue surface and taste cells are due to a liquid junction potential between saliva secreted from the lingual glands due to parasympathetic fiber activity and an adapting solution on the tongue surface. Intracellularly recorded depolarizing receptor potentials in taste cells induced by 0.5 M NaCl and 3 mM acetic acid were enhanced by depolarizing slow potentials induced by GP nerve stimulation, but were depressed by the hyperpolarizing slow potentials. On average, the receptor potential of taste cells for 0.5 M NaCl was increased by 25% by the GP nerve-induced slow potential, but the receptor potential of taste cells for 3 mM acetic acid was decreased by 1% by the slow potential. These transformations of receptor potentials in frog taste cells were not due to a synaptic event initiated between taste cells and the efferent nerve fiber, but due to a non-synaptic event, a lingual junction potential generated in the dorsal lingual epithelium by GP nerve stimulation.  相似文献   

7.
When the glossopharyngeal (GP) nerve of the frog was stimulated electrically, electropositive slow potentials were recorded from the tongue surface and depolarizing slow potentials from taste cells in the fungiform papillae. The amplitude of the slow potentials was stimulus strength- and the frequency-dependent. Generation of the slow potentials was not related to antidromic activity of myelinated afferent fibers in the GP nerve, but to orthodromic activity of autonomic post-ganglionic C fibers in the GP nerve. Intravenous injection of atropine abolished the positive and depolarizing slow potentials evoked by GP nerve stimulation, suggesting that the slow potentials were induced by the activity of parasympathetic post-ganglionic fibers. The amplitude and polarity of the slow potentials depended on the concentration of adapting NaCl solutions applied to the tongue surface. These results suggest that the slow potentials recorded from the tongue surface and taste cells are due to the liquid junction potential generated between saliva secreted from the lingual glands by GP nerve stimulation and the adapting solution on the tongue surface.  相似文献   

8.
The rat taste cells responded to K-benzoate solutions higher than the threshold concentrations (0.03-0.3 M) with a depolarizing receptor potential, but they responded to K-benzoate lower than the thresholds with a hyperpolarizing receptor potential. In either depolarizing or hyperpolarizing receptor potentials the rise time decreased with increasing amplitude, but the fall time increased with increasing amplitude. During generation of either depolarizing or hyperpolarizing receptor potentials the input resistance of taste cells decreased with increasing amplitude. Application of the mixtures of various concentrations of NaCl and 0.05 M K-benzoate resulted in a reduction of receptor potential amplitude, as compared with that evoked by application of NaCl alone. It is concluded that a depression of gustatory neural impulse frequency by low concentrations of K-benzoate is mainly due to the hyperpolarizing receptor potential of taste cells elicited by the K-benzoate solutions.  相似文献   

9.
Isolated cells from rat distal colon were investigated with the patch-clamp technique. In cell-attached and cell-excised patches (inside-out) single chloride channels with outward-rectifying properties were observed. In excised patches the single-channel conductance g was 47 +/- 5 pS at positive and 22 +/- 2 pS at negative clamp potentials (n = 6). The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 10 microM) induced fast closing events, whereas 10 microM of 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) had no effect when applied to the cytosolic side. Quinine in the bath inhibited the Cl- channel by reducing its single-channel amplitude and increased open channel noise. With 0.1 mM the current amplitude decreased by 54% and with 1 mM quinine by 67%. Ca2(+)-dependent nonselective cation channels where observed after excision of the membrane patch. This channel was completely and reversibly inhibited by 100 microM DCDPC. Application of 1 mM quinine to the bath induced flickering and reduced the open-state probability from 0.94 to 0.44. In summary, besides its well established effects on K+ channels, quinine also inhibits nonselective cation channels and chloride channels by inducing fast closing events.  相似文献   

10.
Activation of ryanodine receptors on the sarcoplasmic reticulum of single smooth muscle cells from the stomach muscularis of Bufo marinus by caffeine is accompanied by a rise in cytoplasmic [Ca2+] ([Ca2+]i), and the opening of nonselective cationic plasma membrane channels. To understand how each of these pathways contributes to the rise in [Ca2+]i, one needs to separately monitor Ca2+ entry through them. Such information was obtained from simultaneous measurements of ionic currents and [Ca2+]i by the development of a novel and general method to assess the fraction of current induced by an agonist that is carried by Ca2+. Application of this method to the currents induced in these smooth muscle cells by caffeine revealed that approximately 20% of the current passing through the membrane channels activated following caffeine application is carried by Ca2+. Based on this information we found that while Ca2+ entry through these channels rises slowly, release of Ca2+ from stores, while starting at the same time, is much faster and briefer. Detailed quantitative analysis of the Ca2+ release from stores suggests that it most likely decays due to depletion of Ca2+ in those stores. When caffeine was applied twice to a cell with only a brief (30 s) interval in between, the amount of Ca2+ released from stores was markedly diminished following the second caffeine application whereas the current carried in part by Ca2+ entry across the plasma membrane was not significantly affected. These and other studies described in the preceding paper indicate that activation of the nonselective cation plasma membrane channels in response to caffeine was not caused as a consequence of emptying of internal Ca2+ stores. Rather, it is proposed that caffeine activates these membrane channels either by direct interaction or alternatively by a linkage between ryanodine receptors on the sarcoplasmic reticulum and the nonselective cation channels on the surface membrane.  相似文献   

11.
We investigated the relationship between the membrane potential of frog taste cells in the fungiform papillae and the tonic discharge of parasympathetic efferent fibers in the glossopharyngeal (GP) nerve. When the parasympathetic preganglionic fibers in the GP nerve were kept intact, the mean membrane potential of Ringer-adapted taste cells was -40 mV but decreased to -31 mV after transecting the preganglionic fibers in the GP nerve and crushing the postganglionic fibers in the papillary nerve. The same result occurred after blocking the nicotinic acetylcholine receptors on parasympathetic ganglion cells in the tongue and blocking the substance P neurokinin-1 (NK-1) receptors in the gustatory efferent synapses. This indicates that the parasympathetic nerve (PSN) hyperpolarizes the membrane potential of frog taste cells by -9 mV. Repetitive stimulation of a transected GP nerve revealed that a -9-mV hyperpolarization of taste cells maintained under the intact GP nerve derives from an approximately 10-Hz discharge of the PSN efferent fibers. The mean frequency of tonic discharges extracellularly recorded from PSN efferent fibers of the taste disks was 9.1 impulses/s. We conclude that the resting membrane potential of frog taste cells is continuously hyperpolarized by on average -9 mV by an approximately 10-Hz tonic discharge from the parasympathetic preganglionic neurons in the medulla oblongata.  相似文献   

12.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between -70 and -85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was -53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10(-7)-M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl--free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10(-5)M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   

13.
Light activates a K+ channel and transiently depolarizes the plasma membrane of Arabidopsis mesophyll cells. Genetically or chemically impairing photosynthesis abolished this electrical response to light. These results indicate that illuminated chloroplasts produce a factor that activated K+ channels in the plasma membrane. By patch clamping at the single-channel level, we have obtained evidence that ATP is one such factor. Application of 0.2 to 2 mM ATP to the cytoplasmic side of excised patches of membrane reversibly activated the type of channel that was activated by light in cell-attached patches. In addition, an outward-rectifying K+ channel and an outward-rectifying nonselective cation channel were similarly activated by ATP, whereas a nonselective stretch-activated channel was unaffected by this treatment. This novel mechanism for controlling the permeability of the plasma membrane to K+ may be important to photosynthetic metabolism.  相似文献   

14.
Ca(2+)-induced Ca2+ release (CICR) occurs in frog motor nerve terminals after ryanodine receptors (RyRs) are primed for activation by conditioning large Ca2+ entry. We studied which type of RyR exists, whether CICR occurs without conditioning Ca2+ entry and how RyRs are primed. Immunohistochemistry revealed the existence of RyR3 in motor nerve terminals and axons and both RyR1 and RyR3 in muscle fibers. A blocker of RyR, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) slightly decreased rises in intracellular Ca2+ ([Ca2+]i) induced by a short tetanus (50 Hz, 1-2s), but not after treatment with ryanodine. Repetitive tetani (50 Hz for 15s every 20s) produced repetitive rises in [Ca2+]i, whose amplitude overall waxed and waned. TMB-8 blocked the waxing and waning components. Ryanodine suppressed a slow increase in end-plate potentials (EPPs) induced by stimuli (33.3 Hz, 15s) in a low Ca2+, high Mg2+ solution. KN-62, a blocker of Ca(2+)/calmoduline-activated protein kinase II (CaMKII), slightly reduced short tetanus-induced rises in [Ca2+]i, but markedly the slow waxing and waning rises produced by repetitive tetani in both normal and low Ca2+, high Mg2+ solutions. Likewise, KN-62, but not KN-04, an inactive analog, suppressed slow increases in EPP amplitude and miniature EPP frequency during long tetanus. Thus, CICR normally occurs weakly via RyR3 activation by single impulse-induced Ca2+ entry in frog motor nerve terminals and greatly after the priming of RyR via CaMKII activation by conditioning Ca2+ entry, thus, facilitating transmitter exocytosis and its plasticity.  相似文献   

15.
Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppressed to 60% of control slow DSPs for NaCl and acetic acid stimulations, but to 20–30% for quinine–HCl (Q-HCl) and sucrose stimulations. On the other hand, when a GDRP was induced during a prolonged slow DSP, the amplitude of GDRPs induced by 1 M NaCl and 1 M sucrose was suppressed to 50% of controls, but that by 1 mM acetic acid and 10 mM Q-HCl unchanged. It is concluded that the interaction between GDRPs and efferent-induced slow DSPs in frog taste cells under hypoxia derives from the crosstalk between a gustatory receptor current across the receptive membrane and a slow depolarizing synaptic current across the proximal subsynaptic membrane of taste cells.  相似文献   

16.
Immunoglobulin G (IgG) from Lambert-Eaton myasthenic syndrome (LEMS) patients acts at motor nerve terminal Ca2+ channels. It was injected into mice to investigate effects on cardiac Ca2+ channels. Intracellular recordings were made of slow action potentials in right ventricular muscle cells in the presence of high K+ concentrations and isoprenaline (1 microM). Reduction in Ca2+ concentration reduced the rate of rise and amplitude, but not the duration, of slow action potentials whereas verapamil (1 microM) blocked them. They were not blocked by tetrodotoxin (10 microM), and 4-aminopyridine (1 mM) prolonged the decay phase without affecting the rate of rise and amplitude. The rate of rise, amplitude and duration of slow action potentials were not affected by LEMS IgG. These results show that LEMS IgG does not act on Ca2+ channel currents that underlie slow action potentials in mouse ventricles, suggesting antigenic differences between Ca2+ channels at motor nerve terminals and heart.  相似文献   

17.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between ?70 and ?85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was ?53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10?7 M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl?-free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10?5M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   

18.
K Morimoto  M Sato 《Life sciences》1977,21(11):1685-1695
By artificially perfusing the frog tongue with serotonin (5HT) and its antagonists, the possibility of 5HT as a chemical transmitter from taste cells to nerve terminals in frog taste organ was examined. Although serotonin creatinine sulfate, when perfused through the lingual artery, produced impulse discharges in the glossopharyngeal nerve, creatinine sulfate elicited a similar response. Neural responses to taste stimuli were depressed by perfusion with 5HT. Among many antiserotonergic drugs perfused through the lingual artery, LSD was the only one which modified responses to taste stimuli. LSD suppressed taste responses to NaCl, CaCl2 and water, while LSD at a high concentration (10?5 g/ml) enhanced responses to guinine and HCl. When PCPA (DL-p-chlorophenylalanine) was injected intraperitoneally in conbination with reserpine, the agent did not significantly change taste responses. The above results possibly suggest that 5HT would not be a chemical mediator from taste cells to nerve terminals.  相似文献   

19.
K Enomoto  M F Cossu  T Maeno  C Edwards  T Oka 《FEBS letters》1986,203(2):181-184
Epidermal growth factor (EGF) induces a hyperpolarizing response of 5-20 mV amplitude in mouse mammary epithelial cells in culture. The amplitude of the hyperpolarizing response was reduced by more than 60% within several minutes after addition of blockers of voltage and/or Ca2+-dependent K+ channels such as tetraethylammonium (7 mM) or quinine (0.29 mM). Both nifedipine (0.15 mM), a blocker of the Ca2+ channel, and ruthenium red (2 mM), an inhibitor of the Ca2+-binding site, also reduced the amplitude of the hyperpolarizing response by more than 60%. The Ca2+ ionophore, A23187 (3.8 microM), induced a large hyperpolarization, which was 25-40 mV and lasted about 3 min. These data suggest that activity of the Ca2+-dependent K+ channel was involved in the EGF-induced hyperpolarizing response of the mammary epithelial cells.  相似文献   

20.
The pyloric constrictor muscles of the stomach in Squilla can generate spikes by synaptic activation via the motor nerve from the stomatogastric ganglion. Spikes are followed by slow depolarizing afterpotentials (DAPs) which lead to sustained depolarization during a burst of spikes. 1. The frequency of rhythmic bursts induced by continuous depolarization is membrane voltage-dependent. A brief depolarizing or hyperpolarizing pulse can trigger or terminate bursts, respectively, in a threshold-dependent manner. 2. The conductance increases during the DAP response. The amplitude of DAP decreases by imposed depolarization, whereas it increases by hyperpolarization. DAPs from successive spikes sum to produce a sustained depolarizing potential capable of firing a burst. 3. The spike and DAP are reduced in amplitude by decreasing [Ca]o, enhanced by Sr2+ or Ba2+ substituted for Ca2+, and blocked by Co2+ or Mn2+. DAPs are selectively blocked by Ni2+, and the spike is followed by a hyperpolarizing afterpotential. 4. The spike and DAP are prolonged by intracellular injection of the Ca2+ chelator EGTA. A hyperpolarizing afterpotential is abolished by EGTA and enhanced by increasing [Ca]o. The DAP is diminished in Na(+)-free saline and reduced by tetrodotoxin. 5. It is concluded that the muscle fiber is endowed with endogenous oscillatory properties and that the oscillatory membrane events result from changes of a voltage- and time-dependent conductance to Ca2+ and Na+ and a Ca2+ activated conductance to K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号