首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies are reported on the characterization of a new isolate within a novel class of variants of the L1210 cell exhibiting markedly increased transport inward of folate analogues. This variant (L1210/R83), which was selected in the presence of the antifolate metoprine, exhibited a 40-fold increase in [3H]aminopterin influx compared to parental cells and a modest (4-5-fold) increase in [3H]aminopterin efflux. The increase in influx was associated with a comparable increase in influx Vmax for the one-carbon, reduced folate transport system and the same increase in the amount of specific binding of [3H]aminopterin on the cell surface. Values for influx Km for [3H]aminopterin and specificity for various folate structures were unchanged. The alteration in influx Vmax and more rapid efflux accounted for the different level of intracellular exchangeable level of drug at steady state in this variant compared with parental L1210 cells. Otherwise, membrane potential was unchanged. The N-hydroxysuccinimide ester of [3H]aminopterin was used to covalently label the specific binding protein for folate compounds in the plasma membrane of variant and parental L1210 cells. Incorporation of label into this protein was stable under a variety of conditions and accounted for 97 and 52% of total cellular labeling, respectively, for membrane derived from R83 and parental L1210 cells at a reagent concentration of 20 nM. Specific affinity labeling on the surface of parental and variant cells was decreased in the presence of aminopterin, methotrexate, or 5-formyltetrahydrofolate, but not in the presence of folic acid. Also, [3H]aminopterin influx in these cells was inhibited by the N-hydroxysuccinimide ester of aminopterin or methotrexate, but not the N-hydroxysuccinimide ester of folic acid. These findings, in addition to the increased affinity labeling of this variant, which corresponds to the increase in influx of [3H] aminopterin also seen, appears to identify the affinity labeled protein as a component of the "classical" one-carbon, reduced folate transport system in these cells. The affinity labeled protein from each cell type was solubilized in sodium dodecyl sulfate or extracted in detergent in the presence of proteinase inhibitors and was found to elute from Sephacryl S-300 and migrate during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single peak of Mr = 45,000-48,000. Recovery of labeled binding protein in these fractions from R83 variant cells was approximately 40 times greater than that from parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Summary o-Phthalate is actively transported into L1210 cells and the primary route for cell entry is the same transport system which mediates the influx of methotrexate and other folate compounds. The identity of the influx route has been established by the following observations: (A) Phthalate influx is competitively inhibited by methotrexate and the inhibition constant (K i ) is comparable to theK i for half-maximal influx of methotrexate; (B) Various anions inhibit the influx of phthalate and methotrexate with comparableK i values; (C) The influx of phthalate and methotrexate both fluctuate in parallel with changes in the anionic composition of the external medium; and (D) A specific covalent inhibitor of the methotrexate transport system (NHS-methotrexate) also blocks the transport of phthalate. In contrast, the efflux of phthalate does not occur via the methotrexate influx carrier, but rather by two separate processes which can be distinguished by their sensitivities to bromosulfophthalein. Efflux via the bromosulfophthalein-sensitive route constitutes 75% of total efflux and is enhanced by glucose and inhibited by oligomycin. The inability of phthalate to exit via the methotrexate influx carrier is due to competing intracellular anions which prevent phthalate from interacting with the methotrexate binding site at the inner membrane surface.  相似文献   

3.
We have isolated stable variants of the L1210 cell exhibiting increased transport inward of the folate analog, methotrexate. These variants show 3- to 14-fold increases in [3H]methotrexate influx compared to parental cells but are unaltered for [3H]methotrexate efflux. This increased influx in each variant is quantitatively reflected in corresponding elevations in intracellular exchangeable levels of drug at steady state, but there is no alteration in membrane potential. The increases in influx are associated with increased values for influx Vmax for a system normally transporting reduced folates and the same increase in the amount of a specific binding component at the cell surface. Otherwise, values for influx Km and specificity for various folate structures are unchanged. This alteration in [3H]methotrexate influx is biochemically and genetically stable, since it is expressed in isolated plasma membrane vesicles and is retained during growth in non-selective medium. Following addition of cycloheximide, the same rate of decay of this transport activity (t 1/2 = 126 +/- 24 to 137 +/- 26 min) was shown for parental and variant cells. From these results we conclude that turnover of this transport property occurs in these cells which is genetically regulated. Also, the elevated transport activity inward for this folate analog in these variant cells is probably the result of a genetic alteration up-regulating the rate of synthesis of the "putative" carrier protein itself. The absence of any effect on efflux of [3H]methotrexate in these variants in the face of evidence for increased synthesis of the carrier protein for the system mediating influx of this folate analog is construed as further evidence for the nonidentity of systems mediating each flux that we proposed on the basis of earlier kinetic studies.  相似文献   

4.
Methotrexate transport in L1210 cells is mediated by a carrier protein that can bind organic and inorganic phosphate compounds in addition to the various folate substrates. The photoaffinity labeling agent, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), also interactis (Ki = 140 microM) with the receptor site for this transport system, and upon irradiation with ultraviolet light, irreversibly inhibits methotrexate uptake. Protection against this inactivation is afforded by either a substrate (methotrexate) or a competitive inhibitor (inorganic phosphate). The light-induced reaction proceeds rapidly (t1/2 = 2 min at 23 degrees C under the conditions described) and produces half-maximal reduction in the transport rate when the 8-azido-AMP concentration is 65 microM. complete photoinactivation of methotrexate transport could not be obtained from a single exposure to 8-azido-AMP (up to 1.0 mM), but it could be achieved by the repetitive illumination of cells in a fresh medium. The phosphate and folate/adenine transport systems of L1210 cells are not affected by irradiation in the presence of 8-azido-AMP.  相似文献   

5.
Methotrexate transport in L1210 cells is highly sensitive to inhibition by p-chloromercuriphenylsulfonate (CMPS) and, to a lesser extent, by N-ethylmaleimide. A 50% reduction in the methotrexate influx rate occurred upon exposure of cells to 3 μM CMPS or 175 μM N-ethylmaleimide, while complete inhibition was achieved at higher levels of these agents. Dithiothreitol reversed the inhibition by CMPS, suggesting that a sulfhydryl residue is involved. This residue is apparently not located at the substrate binding site of the transport protein, since methotrexate failed to protect the system from inactivation by either CMPS or N-ethylmaleimide, and the transport protein retained the ability to bind substrate (at 4°C) after exposure to these inhibitors (at 37°C). Methotrexate efflux was also inhibited by CMPS (50% at 4 μM), indicating that both the uptake and efflux of methotrexate in L1210 cells occur via the same transport system. High concentrations of CMPS (greater than 20 μM) increased the efflux rate, apparently by damaging the cell membrane and allowing the passive diffusion of methotrexate out of the cell.  相似文献   

6.
Summary Measurements of methotrexate transport in L1210 cells in the presence and absence ofd-glucose reveal that both influx and efflux are depressed in the absence ofd-glucose, whereas the steady-state accumulation of drug is enhanced. The reason for the increase in steady state is that the relative decline in efflux is greater than the decline in influx. Analysis of the concentration dependence of steady-state methotrexate accumulation ind-glucose-deprived cells indicates a linear relationship consistent with a one-carrier active transport model. Similar data in nondeprived cells is highly nonlinear and strongly supports the postulate that under physiological conditions influx and efflux of methotrexate are mediated by separate carrier systems. These results indicate that the efflux system, preferentially transporting methotrexate under normal conditions, cannot operate in the absence ofd-glucose, whereas the influx system is only partially inhibited under conditions of glucose deprivation.  相似文献   

7.
Routes which contribute to the transport of methotrexate across the plasma membrane of L1210 cells have been evaluated. A single high affinity transport system was found to be the only route for methotrexate uptake. This conclusion was derived from the observations that influx at high substrate concentrations (up to 50 microM) both reaches a single maximum value and can be inhibited by greater than 98% either by treatment of the cells with an active ester of methotrexate or by the direct addition of excess amounts of competitive inhibitors. Efflux, conversely, could be separated into three components. One of these routes was dependent upon extracellular anions and could be blocked by active ester treatment and, therefore, appeared to be the same transport system which mediates methotrexate influx. A second route was identified by its sensitivity to bromosulfophthalein, while a third component was insensitive to both active ester treatment and to bromosulfophthalein. When these efflux routes were quantitated in a buffered saline medium, the methotrexate influx carrier was found to account for the major portion (71%) of total efflux. The inhibitor-insensitive component contributed an additional 23%, while the remaining 6% was attributable to the bromosulfophthalein-sensitive route. The addition of glucose increased total efflux by 3-fold and caused a substantial change in the proportion of efflux that occurred via each of the three components. The major portion of efflux (46%) now occurred via the bromosulfophthalein-sensitive route, while the influx carrier contributed only 29% of the total. The inhibitor-insensitive route accounted for the remaining 25%. The opposite result was obtained with metabolic inhibitors which decreased total efflux but increased the contribution by the influx carrier to greater than 80%. The demonstration of multiple routes for methotrexate efflux and their differential sensitivities to alterations in energy metabolism thus provides a basis for explaining previously described asymmetries between the influx and efflux of methotrexate in mouse leukemia cells.  相似文献   

8.
Structurally diverse anions (folate, 5-formyltetrahydrofolate, AMP, ADP, thiamine pyrophosphate, phosphate, sulfate, and chloride) that are competitive inhibitors of methotrexate influx in L1210 cells also enhance the efflux of methotrexate from these cells. The increase in efflux reaches a maximum of 2- to 4-fold depending upon the anion employed, and the anion concentrations required for half-maximal stimulation of efflux are similar to their Ki values for inhibition of methotrexate influx. A competitive inhibitor of methotrexate uptake (fluorescein-diaminopentane-methotrexate) that is not transported by this system, does not increase methotrexate efflux. These results suggest that the efflux of intracellular methotrexate is coupled to the concomitant uptake of an extracellular anion.  相似文献   

9.
In cells of L1210 ascite leukemia cells, methotrexate inhibited H3-thymidine incorporation, blocked shortly (during 4 hours) the G1 leads to S transition, and did not affect cells in G2-phase or in the late S phase. Almost half a cell population was degenerated and cells in S- and G1-phases were affected in equal proportion. This may suggest that methotrexate is not S-phase specific for cells of leukemia L1210. A simultaneous administration of vinblastine increases the antitumour effect of methotrexate. Cells in G2-phase constitute, presumably, a significant proportion of cells recovered after methotrexate administration. A comparison of the data obtained with literature evidence shows that in the sensitive (leukemia L1210) and resistant (acute mieloid leukemia of man) forms of leukemia, methotrexate affects cells that are in S-phase, whereas cells being in G1-phase are affected only when the sensitive tumours are treated.  相似文献   

10.
This study reports the isolation and characterization of a variant of the human CCRF-CEM leukemia cell line that overproduces the carrier protein responsible for the uptake of reduced folates and the folate analogue methotrexate. The variant was obtained by adapting CCRF-CEM cells for prolonged times to stepwise decreasing concentrations of 5-formyltetrahydrofolate as the sole folate source in the cell culture medium. From cells that were grown on less than 1 nM 5-formyl-tetrahydrofolate, a variant (CEM-7A) was isolated exhibiting a 95-fold increased Vmax for [3H]methotrexate influx compared to parental CCRF-CEM cells. The values for influx Km, efflux t0.5, and Ki for inhibition by other folate (analogue) compounds were unchanged. Affinity labeling of the carrier with an N-hydroxysuccinimide ester of [3H]methotrexate demonstrate an approximately 30-fold increased incorporation of [3H] methotrexate in CEM-7A cells. This suggests that the up-regulation of [3H]methotrexate influx is not only due to an increased amount of carrier protein, but also to an increased rate of carrier translocation or an improved cooperativity between carrier protein molecules. Incubation for 1 h at 37 degrees C of CEM-7A cells with a concentration of 5-formyltetrahydrofolate or 5-methyltetrahydrofolate in the physiological range (25 nM) resulted in a 7-fold decline in [3H]methotrexate influx. This down-regulation during incubations with 5-formyltetrahydrofolate or 5-methyltetrahydrofolate could be prevented by either the addition of 10-25 nM of the lipophilic antifolate trimetrexate or by preincubating CEM-7A cells with 25 nM methotrexate. The down-regulatory effect was specifically induced by reduced folates since incubation of CEM-7A cells with 25 nM of either methotrexate, 10-ethyl-10-deazaaminopterin, aminopterin, or folic acid, or a mixture of purines and thymidine, had no effect on [3H]methotrexate influx. Similarly, these down-regulatory effects on [3H]methotrexate transport by 5-formyltetrahydrofolate, and its reversal by trimetrexate or methotrexate, were also observed, though to a lower extent, for parental CCRF-CEM cells grown in folate-depleted medium rather than in standard medium containing high folate concentrations. These results indicate that mediation of reduced folate/methotrexate transport can occur at reduced folate concentrations in the physiological range, and suggest that the intracellular folate content may be a critical determinant in the regulation of methotrexate transport.  相似文献   

11.
The kinetics of methotrexate transport in L1210 cells are described. Data derived from the measurements of initial influx, the complete time-course of uptake, intracellular steady-state level and unidirectional efflux were found to be consistent with a simple empirical equation containing three constants. Properties of the system include the following: (1) saturability of initial influx; (2) approach to steady state during uptake is expoential; (3) the half-time for drug uptake is independent of external concentration and qual to half-time for efflux; and (4) transport is concentrative at low external concentrations, whereas the reverse is true at high external concentrations. These observations are incorporated into a kinetic model which quantitatively accounts for the data on the basis of the hypothesis that influx and efflux take place via different carriers.  相似文献   

12.
Polyanionic 5'-cholesteryl-phosphorothioate oligodeoxynucleotides of varying polymer length and nucleobase composition were examined for an effect on methotrexate transport via the reduced-folate carrier of L1210 mouse cells. Methotrexate transport was inhibited by each of the oligodeoxynucleotide analogs tested. Inhibition was most pronounced (IC50 = 0.21 microM, standard assay) for a 5'-cholesteryl heteropolymer consisting of 15 phosphorothioate deoxynucleotides with alternating deoxycytosine and deoxyadenosine (Chol-PS-d(CA)7C). Homopolymers with 15 deoxycytosine (Chol-PS-dC15) or deoxythymidine (Chol-PS-dT15) residues were approximately 2-fold less inhibitory than Chol-PS-d(CA)7C. The relative potency of transport inhibition by deoxycytosine oligomers of varying length was: Chol-PS-dC5 > Chol-PS-dC15 > Chol-PS-dC28 > Chol-PS-dC3. Substantial inhibition was retained in cells preincubated with inhibitors and washed prior to transport determinations and the inhibitor sensitivity could be increased substantially by reducing the concentration of cells. Mixed competitive and non-competitive inhibition was observed for each analog. In standard high-folate medium, Chol-PS-oligodeoxynucleotides (5.0 microM) had minimal effects on the growth of L1210 cells, but antagonized the cytotoxicity of methotrexate. The response to methotrexate (IC50 = 12 nM) decreased to the greatest extent (20.8-fold) in the presence of Chol-PS-d(CA)7C (IC50 = 250 nM). Under limiting folate conditions, Chol-PS-d(CA)7C alone inhibited cells growth by a process which could be reversed by folic acid. The results show that Chol-PS-oligodeoxynucleotides are among the most potent known inhibitors of the reduced-folate carrier. Direct growth inhibition of folate-deficient cells and antagonism of methotrexate cytotoxicity indicate that Chol-PS-oligodeoxynucleotides retain the ability to inhibit the reduced-folate carrier for several days in cultured cells.  相似文献   

13.
Although the reduced folate carrierRFC1 and the thiamine transporters THTR-1 and THTR-2 share ~40% oftheir identity in protein sequence, RFC1 does not transport thiamineand THTR-1 and THTR-2 do not transport folates. In the present study,we demonstrate that transport of thiamine monophosphate (TMP), animportant thiamine metabolite present in plasma and cerebrospinalfluid, is mediated by RFC1 in L1210 murine leukemia cells. Transport ofTMP was augmented by a factor of five in cells (R16) that overexpressRFC1 and was markedly inhibited by methotrexate, an RFC1 substrate, butnot by thiamine. At a near-physiological concentration (50 nM), TMP influx mediated by RFC1 in wild-type L1210 cells was ~50% ofthiamine influx mediated by thiamine transporter(s). Within 1 min, the majority of TMP transported into R16 cells was hydrolyzed to thiamine with a component metabolized to thiamine pyrophosphate, the active enzyme cofactor. These data suggest that RFC1 may be one of the alternative transport routes available for TMP in some tissues whenTHTR-1 is mutated in the autosomal recessive disorderthiamine-responsive megaloblastic anemia.

  相似文献   

14.
In this report, we elucidate the role of Na(+)-K+ pump in the regulation of polyamine spermidine (Spd) transport in murine leukemia (L 1210) cells in culture. Ouabain, known to bind extracellularly to the alpha-subunit of the Na(+)-K+ pump, inhibits the pump activity. The L 1210 cells were found to possess ouabain binding sites at 7.5 fmol/10(6) cells. Ouabain significantly inhibited the Spd uptake in a dose-dependent manner. The maximum inhibition of Spd uptake by ouabain was observed beyond 200 microM. Spd transport was inversely correlated with the [3H]ouabain binding to L 1210 cells: an increase in the saturation of ouabain binding to L 1210 cells resulted in a decrease of the Spd uptake process. Treatment of L 1210 cells with protein kinase C activator phorbol esters increased the Spd transport and, also, ouabain-sensitive 86Rb+ uptake, a measure of the activity of the Na(+)-K+ pump. H-7, a protein kinase C inhibitor, significantly inhibited the ouabain-sensitive 86Rb+ uptake by L 1210 cells. Phorbol esters stimulated the level, but not the rate, of 22Na+ influx. Addition of H-7 to L 1210 cells inhibited the 22Na+ influx process. A concomitant phorbol ester-induced increase in 22Na+ influx, [14C]Spd uptake, together with the functioning of Na(+)-K+ pump, indicates the role of the "Na+ cycle" in the regulation of the polyamine transport process.  相似文献   

15.
Transport of methotrexate (MTX) in L1210 cells is highly dependent upon the ionic composition of the external medium. Half-maximal rates of MTX transport (Kt values) vary from 0.9 μm in cells suspended in potassium-Hepes buffer containing Mg2+ (Hepes-Mg), to 10 μm in phosphate-buffered saline (PBS). At saturating levels of substrate, however, transport rates approach the same maximum velocity (V) regardless of the buffering medium. The increased Kt value for MTX in PBS is due to the presence of the competitive inhibitors, phosphate (Ki = 0.87 mM) and Cl? (Ki = 46 mM). Concentration gradients for MTX at the steady state are also much lower (about 20-fold) in PBS than in Hepes-Mg; the components of PBS that reduce this uptake parameter are phosphate, Cl?, Ca2+, and Na+. Ions that decrease the influx rate or the steady-state level also produce an increase in MTX efflux. Glucose (which increases ATP levels) reduces influx rates and steady-state levels of MTX, and induces efflux in both PBS and Hepes-Mg. Conversely, the combination of azide plus iodoacetate (which reduces ATP levels) stimulates MTX uptake in PBS, but has little effect on MTX transport parameters in Hepes-Mg. The unusually high sensitivity of MTX transport to various anions is consistent with the hypothesis that this system catalyzes the exchange of external MTX for an intracellular anion, and that efflux of the anion down a concentration gradient provides the driving force for active transport of MTX.  相似文献   

16.
Sodium-dependent nucleoside transport in mouse leukemia L1210 cells   总被引:1,自引:0,他引:1  
Nucleoside permeation in L1210/AM cells is mediated by (a) equilibrative (facilitated diffusion) transporters of two types and by (b) a concentrative Na(+)-dependent transport system of low sensitivity to nitrobenzylthioinosine and dipyridamole, classical inhibitors of equilibrative nucleoside transport. In medium containing 10 microM dipyridamole and 20 microM adenosine, the equilibrative nucleoside transport systems of L1210/AM cells were substantially inhibited and the unimpaired activity of the Na(+)-dependent nucleoside transport system resulted in the cellular accumulation of free adenosine to 86 microM in 5 min, a concentration three times greater than the steady-state levels of adenosine achieved without dipyridamole. Uphill adenosine transport was not observed when extracellular Na+ was replaced by Li+, K+, Cs+, or N-methyl-D-glucammonium ions, or after treatment of the cells with nystatin, a Na+ ionophore. These findings show that concentrative nucleoside transport activity in L1210/AM cells required an inward transmembrane Na+ gradient. Treatment of cells in sodium medium with 2 mM furosemide in the absence or presence of 2 mM ouabain inhibited Na(+)-dependent adenosine transport by 50 and 75%, respectively. However, because treatment of cells with either agent in Na(+)-free medium decreased adenosine transport by only 25%, part of this inhibition may be secondary to the effects of furosemide and ouabain on the ionic content of the cells. Substitution of extracellular Cl- by SO4(-2) or SCN- had no effect on the concentrative influx of adenosine.  相似文献   

17.
Cultured mouse leukemia L1210 cells express the nucleoside-specific membrane transport processes designated es, ei, and cif. The es and ei processes are equilibrative, but may be distinguished by the high sensitivity of the former to 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine (NBMPR); the cif process is mediated by a Na+/nucleoside cotransporter of low sensitivity to NBMPR. Cells of an ei-deficient clonal line, L1210/MC5-1, were mutagenized, and clones were selected in soft agar medium that contained (i) NBMPR (an inhibitor of es processes), (ii) erythro-9-(2-hydorxy-3-nonyl)adenine (an inhibitor of adenosine deaminase), and (iii) arabinofuranosyladenine (a cytotoxic substrate for the three nucleotide transporters). The selection medium did not allow es activity and selected against cells that expressed the Na(+)-linked cif process. Cells of the L1210/B23.1 clonal isolate were deficient in cif transport activity, and inward fluxes of formycin B, a poorly metabolized analog of inosine, were virtually abolished by NBMPR in these cells. In the mutant cells, nonisotopic formycin B behaved as a countertransport substrate during influx of [3H]formycin B, and inward fluxes of the latter were competitively inhibited by purine and pyrimidine nucleosides. The transport behavior of L1210/B23.1 cells indicates that (i) the mutation/selection procedure impaired or deleted the Na(+)-linked cif process and (ii) es nucleoside transport activity is expressed in the mutant cells.  相似文献   

18.
A unique interaction between the folate analog, methotrexate (4-amino-4-deoxy-10-methylpteroylglutamic acid), and the naturally occurring folates in L1210 leukemia and Ehrlich ascites tumor cells provides a useful model for the study of heteroexchange diffusion. The presence of intracellular binding sites with a high affinity for methotrexate but a low affinity for folic acid and its tetrahydrofolate derivatives permit the measurement of true unidirectional influx rates for methotrexate and assure that the trans-stimulation of methotrexate uptake by the intracellular presence of the other folates is due solely to a primary augmentation of this carrier influx mechanism. Further, since free methotrexate does not appear prior to saturation of the binding sites, the reaction between the folates and carrier at the inner cell membrane is undisturbed by methotrexate released from carrier as the complex enters the cell during heteroexchange, facilitating quantitation of the kinetic alterations which occur for methotrexate influx during trans-stimulation.  相似文献   

19.
Properties of the methotrexate (MTX) transport carrier were examined in a stable single-step 16-fold MTX-resistant L1210 murine leukemia cell line with unchanged dihydrofolate reductase gene copy and thymidylate synthase and dihydrofolate reductase levels and activities. MTX influx was markedly depressed due to a decrease in Vmax without a change in Km. From this cell line a clonal variant with greater resistance to MTX was identified due solely to a further decrease in influx Vmax. Trans-stimulation of MTX influx by 5-formyltetrahydrofolate was induced in parental but not resistant cells. Analysis of specific MTX surface binding demonstrated a small increase in the number of carriers in the first- and second-step resistant lines. Affinity labeling of cells with an N-hydroxysuccinimide ester derivative of [3H]MTX demonstrated carriers with comparable molecular weights in the parent and second-step transport defective lines. In two partial revertants with increased MTX sensitivity isolated from the second-step resistant lines, MTX influx was increased but surface membrane-binding sites were unchanged suggesting that recovery of transport was due to normalization of carrier function rather than an increase in the number of carriers. These studies suggest that impaired MTX transport in these lines is not due to an alteration in the association of the transport carrier with its substrate at the cell surface. Rather, resistance may be due to an alteration in the mobility of the carrier possibly associated with a protein change in the carrier itself or the cell membrane that surrounds it.  相似文献   

20.
We have studied by flow cytometry the transport of fluorescein-methotrexate in Chinese hamster ovary cells. Fluorescein-methotrexate appears to enter cells via a mechanism different from the carrier-mediated system for methotrexate. This conclusion is supported by the following observations: 1) Fluorescein-methotrexate is transported equally well into normal and mutant cells defective in the inward methotrexate uptake. 2) Folic acid and its reduced states, which competitively inhibit methotrexate uptake, do not alter fluorescein-methotrexate transport. 3) Fluorescein-methotrexate accumulation exhibits a low temperature coefficient (Q10 = 1.6) compared with the influx of methotrexate (Q10 = 6-8). 4) Initial rates of fluorescein-methotrexate uptake are concentration dependent but are not saturable. 5) Fluorescein-methotrexate uptake is very slow and reaches steady state after 8 h, whereas at an equimolar concentration methotrexate reaches saturation after 20 min. 6) Initial influx rates of fluorescein-methotrexate are not affected by the presence of methotrexate. 7) Sulfhydryl-reactive mercurials, which block methotrexate transport, do not reduce fluorescein-methotrexate influx, but rather stimulate it. Thus, based on the nonsaturability of fluorescein-methotrexate inward transport, its low temperature coefficient, and lack of inhibition with structural analogs, we conclude that fluorescein-methotrexate is accumulated in hamster cells by a passive diffusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号