首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effect of riboflavin deficiency and phenobarbital pretreatment on drug hydroxylation and lipid peroxidation was investigated. A significant decrease in aniline and acetanilide hydroxylation as well as NADPH-linked and ascorbate-induced lipid peroxidation was observed during 4- and 7-week riboflavin deficiency in both adult male and adult female rats. The drug-hydroxylation and lipid-peroxidation activities were further lowered with the increase in riboflavin deficiency. The phenobarbital pretreatment induced aniline and acetanilide hydroxylase activity even in riboflavin-deficient animals. Drug hydroxylation inhibits lipid peroxidation in both deficient and normal rats. The administration of riboflavin was followed by a significant increase in drug hydroxylation and lipid peroxidation.  相似文献   

4.
5.
6.
7.
The effects of riboflavin deficiency on hepatic peroxisomal and mitochondrial palmitoyl-CoA oxidation were examined in weanling Wistar-strain male rats. The specific activities of peroxisomal catalase and palmitoyl-CoA-dependent NAD+ reduction were not affected by up to 10 weeks of riboflavin deficiency. In contrast, the specific activity of mitochondrial carnitine-dependent palmitoyl-CoA oxidation was depressed by 75% at 10 weeks of deficiency. The amount of peroxisomal protein per g of liver was not affected by riboflavin deficiency, whereas, expressed per liver, both riboflavin-deficient and pair-fed controls showed decreased peroxisomal protein compared with controls fed ad libitum. Hepatic mitochondria, but not peroxisomes, were sensitive to riboflavin deficiency.  相似文献   

8.
Using difference spectrophotometry, measurements of succinate dehydrogenase activity, and SDS-polyacrylamide gels, the biochemical properties of hepatic mitochondria from riboflavin-deficient rats were monitored during recovery on riboflavin. [14C]Riboflavin was incorporated into four mitochondrial flavoproteins having covalently bound flavin coenzyme. Alterations in cytochromes, especially cytochrome oxidase, and the biosyntheses of succinate dehydrogenase, monoamine oxidase, sarcosine dehydrogenase, and an unknown flavoprotein were observed.  相似文献   

9.
Intravenous administration of dodecanedioate (or hexadecanedioate) to anaesthetized rats resulted in the urinary excretion of medium-chain dicarboxylic acids (adipic, suberic and sebacic acids). In control animals, the recovery of infused dodecanedioate in the form of urinary medium-chain dicarboxylic acids corresponded to 30% of the infused dose (22 mumol/100 g body mass). This excretion was markedly increased in riboflavin-deficient rats (75% of the infused dose) while it was severely decreased in clofibrate-treated animals (less than 5%). The initial velocity of this process was similar in both control and riboflavin-deficient rats. In control animals, halving the infused dose of dodecanedioate to 11 mumol/100 g body mass resulted in a halving of the initial rate of the urinary appearance of medium-chain dicarboxylates, while doubling the amount of dicarboxylate administered to 44 mumol/100 g body mass did not further modify this velocity, but rather prolonged the duration of the excretion of the resulting products. In riboflavin-deficient and clofibrate-treated rats, the hepatic peroxisomal dicarboxylyl-CoA beta-oxidation activity measured as dicarboxylyl-CoA H2O2-generating oxidase and cyanide-insensitive dicarboxylyl-CoA-dependent NAD+ reduction was increased about threefold and tenfold, respectively. Dicarboxylyl-CoA synthetase activity was normal in the clofibrate-treated rat livers but was increased more than tenfold in the livers from the riboflavin-deficient animals. This work provides evidence that in the rat both mitochondria and peroxisomes are involved in the catabolism of dicarboxylates.  相似文献   

10.
11.
12.
The effect of riboflavin deficiency on the activity of L-gulonolactone oxidase [L-gulono-γ-lactone : oxygen 2-oxidoreductase, EC 1.1.3.8] and on vitamin C status was studied. A marked decrease in the specific activity of L-gulonolactone oxidase was observed in the liver microsomes isolated from riboflavin-deficient rats: the specific activity was approx. one-third of that in the microsomes isolated from control rats. The L-ascorbic acid content in the liver of the riboflavin-deficient rats was approx. one-half of that in the liver of the control rats. It seems that the rate of production of L-ascorbic acid in the riboflavin-deficient rats is limited by the decreased level of L-gulonolactone oxidase activity. Immunotitration using rabbit antiserum directed to L-gulonolactone oxidase revealed that a substantial amount of an inactive form of this enzyme is present in the liver microsomes of the riboflavin-deficient rats. L-Gulonolactone oxidase activity in the microsomes of these rats increased by approx. 35% upon addition of FAD, but it was slightly decreased by the addition of FMN or riboflavin. These results indicate that the liver microsomes of the riboflavin-deficient rats contain a protein which exhibits L-gulonolactone oxidase activity upon addition of FAD.  相似文献   

13.
14.
Riboflavin-deficient rats are used to study the metabolism of deuterium-labeled nonanoic acids under conditions mimicking the human disorder of multiple acyl-CoA dehydrogenase deficiency in which large amounts of ethyl-malonic, glutaric, adipic, suberic, 4-octenedioic, sebacic and 4-decenedioic acids are excreted. Both control and deficient rats convert the nonanoic acids to labeled azelaic and pimelic acids. The labeling pattern in pimelic acid is consistent with the omega-oxidation of nonanoic acids to azelaic acid followed by beta-oxidation to pimelic acid.  相似文献   

15.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction to flavinogenesis. It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation. 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-methyl-8-trifluoro-methyl-10-(beta-hydroxyethyl)izoalloxazine and galactoflavin exerted only a slight effect on this process. The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2'-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect. The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

16.
17.
To clarify the changes of mineral levels in different tissues of riboflavin-deficient rats, Wistar rats were separated into three groups. One group was fed a diet ad libitum that was deficient in riboflavin. The other two were fed either the complete diet that was weight-matched to the riboflavin-deficient group or fed a complete diet ad libitum. In riboflavin-deficient rats, the hemoglobin concentration and riboflavin contents of blood, liver, and kidney were significantly decreased, compared with weight-matched and ad libitum-fed controls. The mineral concentrations of tissues are summarized as follows: The iron (Fe) concentration in the heart, liver, and spleen was decreased in the riboflavin-deficient group compared with the other groups. Calcium (Ca) and magnesium (Mg) concentrations in tibia were decreased in the riboflavin-deficient group compared with the other two groups. Copper (Cu) concentration was increased in the heart and liver when the riboflavin-deficient group was compared with the other groups. Zinc (Zn) concentration was increased in tibia when the riboflavin-deficient group was compared with the other groups.  相似文献   

18.
Weanling male rats were fed a riboflavin-deficient diet for 5-8 weeks, and the decrease in NADPH-cytochrome P-450 reductase (FpT) activity in the liver microsomes was compared with the contents of riboflavin derivatives. The decrease of FpT activity for the reduction of cytochrome c was greater than that for the reduction of ferricyanide. The FpT's of riboflavin-deficient and control rats were indistinguishable in the Ouchterlony immunodiffusion test against anti-FpT, and were shown to have the same molecular weight of 78,000 by SDS-polyacrylamide slab gel electrophoresis. However, the purified FpT of the riboflavin-deficient rats contained 14.2, 4.9, and 1.9 nmol of FAD, FMN, and riboflavin per mg of protein, respectively, while that of the control rats contained 10.6 and 9.5 nmol of FAD and FMN per mg of protein, respectively. After riboflavin injection into the riboflavin-deficient rats, NADPH-cytochrome c reductase activity and FMN content of the FpT were restored to the control levels in 36 h, NADPH-ferricyanide reductase activity recovered in 18 h, and riboflavin content diminished in 18 h. On incubation of the purified FpT of the riboflavin-deficient rats with FMN, NADPH-cytochrome c reductase activity and FMN content were restored to those of control rats. These results indicated that a part of FMN in the FpT of the riboflavin-deficient rats was replaced with FAD and riboflavin.  相似文献   

19.
20.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction of flavinogenesis.It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation.7-methyl-8-trifluoromethyl-10-(1′- -ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-mithyl-8-trifluoromethyl-10-(β-hydroxyethyl) izoalloxazine and galactoflavin exerted only a slight effect on this process.The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2′-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect.The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号