首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic domains of viral glycoproteins are often involved in specific interactions with internal viral components. These interactions can concentrate glycoproteins at virus budding sites and drive efficient virus budding, or can determine virion morphology. To investigate the role of the vesicular stomatitis virus (VSV) glycoprotein (G) cytoplasmic and transmembrane domains in budding, we recovered recombinant VSVs expressing chimeric G proteins with the transmembrane and cytoplasmic domains derived from the human CD4 protein. These unrelated foreign sequences were capable of supporting efficient VSV budding. Further analysis of G protein cytoplasmic domain deletion mutants showed that a cytoplasmic domain of only 1 amino acid did not drive efficient budding, whereas 9 amino acids did. Additional studies in agreement with the CD4-chimera experiments indicated the requirement for a short cytoplasmic domain on VSV G without the requirement for a specific sequence in that domain. We propose a model for VSV budding in which a relatively non-specific interaction of a cytoplasmic domain with a pocket or groove in the viral nucleocapsid or matrix proteins generates a glycoprotein array that promotes viral budding.  相似文献   

2.
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.  相似文献   

3.
Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.  相似文献   

4.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5°C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

5.
Using the vesicular stomatitis virus (VSV) pseudotype system, we studied the functional properties of the Ebola virus glycoprotein (GP). Amino acid substitutions at the GP cleavage site, which reduce glycoprotein cleavability and viral infectivity in some viruses, did not appreciably change the infectivity of VSV pseudotyped with GP. Likewise, removal of two acylated cysteine residues in the transmembrane region of GP showed no discernible effects on infectivity. Although most filoviruses are believed to target endothelial cells and hepatocytes preferentially, the GP-carrying VSV showed greater affinity for epithelial cells than for either of these cell types, indicating that Ebola virus GP does not necessarily have strong tropism toward endothelial cells and hepatocytes. Finally, when it was used to screen for neutralizing antibodies against Ebola virus GP, the VSV pseudotype system allowed us to detect strain-specific neutralizing activity that was inhibited by secretory GP (SGP). This finding provides evidence of shared neutralizing epitopes on GP and SGP molecules and indicates the potential of SGP to serve as a decoy for neutralizing antibodies.  相似文献   

6.
To develop a high-titer surrogate virus for human T-cell leukemia virus type 1 (HTLV-1), we generated recombinant vesicular stomatitis viruses (VSVs) in which the gene encoding the single transmembrane glycoprotein (G) was deleted. Genes encoding HTLV-1 envelope glycoproteins (HTEnv) or HTEnvG hybrid proteins were then inserted into either of two different sites in the VSV genome. The viruses also encoded a green fluorescent protein. With this surrogate virus, we found that a soluble protein, osteoprotegerin (OPG), or an OPG/Fc chimeric protein inhibited the infection of various cell lines. Our experiments indicate that this inhibition resulted from binding of heparan sulfate by OPG.  相似文献   

7.
Here we defined the main viral determinant of Ebola virus pathogenicity; synthesis of the virion glycoprotein (GP) of Ebola virus Zaire induced cytotoxic effects in human endothelial cells in vitro and in vivo. This effect mapped to a serine-threonine-rich, mucin-like domain of this type I transmembrane glycoprotein, one of seven gene products of the virus. Gene transfer of GP into explanted human or porcine blood vessels caused massive endothelial cell loss within 48 hours that led to a substantial increase in vascular permeability. Deletion of the mucin-like region of GP abolished these effects without affecting protein expression or function. GP derived from the Reston strain of virus, which causes disease in nonhuman primates but not in man, did not disrupt the vasculature of human blood vessels. In contrast, the Zaire GP induced endothelial cell disruption and cytotoxicity in both nonhuman primate and human blood vessels, and the mucin domain was required for this effect. These findings indicate that GP, through its mucin domain, is the viral determinant of Ebola pathogenicity and likely contributes to hemorrhage during infection.  相似文献   

8.
We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein was deleted and replaced by one or both of the E1G and E2G genes, together with a green fluorescent protein gene. These DeltaG viruses incorporated E1G and E2G proteins at levels approximately equivalent to the normal level of VSV G itself, or about 1,200 molecules of each protein per virion. Given the potency of VSV recombinants as vaccines in other studies, this high-level expression and incorporation of HCV proteins into virions could be very important for development of an HCV vaccine. Despite the presence of E1G and E2G proteins at high levels in the virions, these virions did not infect cell lines that have been reported to support at least a low level of HCV infection and replication.  相似文献   

9.
Ebola virus, a member of the family Filoviridae, causes one of the most severe forms of viral hemorrhagic fever. In the terminal stages of disease, symptoms progress to hypotension, coagulation disorders, and hemorrhages, and there is prominent involvement of the mononuclear phagocytic and reticuloendothelial systems. Cells of the mononuclear phagocytic system are primary target cells and producers of inflammatory mediators. Ebola virus efficiently produces four soluble glycoproteins during infection: sGP, delta peptide (Delta-peptide), GP(1), and GP(1,2Delta). While the presence of these glycoproteins has been confirmed in blood (sGP) and in vitro systems, it is hypothesized that they are of biological relevance in pathogenesis, particularly target cell activation. To gain insight into their function, we expressed the four soluble glycoproteins in mammalian cells and purified and characterized them. The role of the transmembrane glycoprotein in the context of virus-like particles was also investigated. Primary human macrophages were treated with glycoproteins and virus-like particles and subsequently tested for activation by detection of several critical proinflammatory cytokines (tumor necrosis factor alpha, interleukin-6 [IL-6], and IL-1 beta) and the chemokine IL-8. The presentation of the glycoprotein was determined to be critical since virus-like particles, but not soluble glycoproteins, induced high levels of activation. We propose that the presentation of GP(1,2) in the rigid form such as that observed on the surface of particles is critical for initiating a sufficient signal for the activation of primary target cells. The secreted glycoproteins do not appear to play any role in exogenous activation of these cells during Ebola virus infection.  相似文献   

10.
Replication-defective vaccine vectors based on vesicular stomatitis virus (VSV) lacking its envelope glycoprotein gene (G) are highly effective in animal models. However, such ΔG vectors are difficult to grow because they require complementation with the VSV G protein. In addition, the complementing G protein induces neutralizing antibodies in animals and thus limits multiple vector applications. In the process of generating an experimental Nipah virus (a paramyxovirus) vaccine, we generated two defective VSVΔG vectors, each expressing one of the two Nipah virus (NiV) glycoproteins (G and F) that are both required for virus entry to host cells. These replication-defective VSV vectors were effective at generating NiV neutralizing antibody in mice. Most interestingly, we found that these two defective viruses could be grown together and passaged in tissue culture cells in the absence of VSV G complementation. This mixture of complementing defective viruses was also highly effective at generating NiV neutralizing antibody in animals. This novel approach to growing and producing a vaccine from two defective viruses could be generally applicable to vaccine production for other paramyxoviruses or for other viruses where the expression of at least two different proteins is required for viral entry. Such an approach minimizes biosafety concerns that could apply to single, replication-competent VSV recombinants expressing all proteins required for infection.  相似文献   

11.
Lassa and Ebola viruses cause acute, often fatal, hemorrhagic fever diseases, for which no effective vaccines are currently available. Although lethal human disease outbreaks have been confined so far to sub-Saharan Africa, they also pose significant epidemiological concern worldwide as demonstrated by several instances of accidental importation of the viruses into North America and Europe. In the present study, we developed experimental individual vaccines for Lassa virus and bivalent vaccines for Lassa and Ebola viruses that are based on an RNA replicon vector derived from an attenuated strain of Venezuelan equine encephalitis virus. The Lassa and Ebola virus genes were expressed from recombinant replicon RNAs that also encoded the replicase function and were capable of efficient intracellular self-amplification. For vaccinations, the recombinant replicons were incorporated into virus-like replicon particles. Guinea pigs vaccinated with particles expressing Lassa virus nucleoprotein or glycoprotein genes were protected from lethal challenge with Lassa virus. Vaccination with particles expressing Ebola virus glycoprotein gene also protected the animals from lethal challenge with Ebola virus. In order to evaluate a single vaccine protecting against both Lassa and Ebola viruses, we developed dual-expression particles that expressed glycoprotein genes of both Ebola and Lassa viruses. Vaccination of guinea pigs with either dual-expression particles or with a mixture of particles expressing Ebola and Lassa virus glycoprotein genes protected the animals against challenges with Ebola and Lassa viruses. The results showed that immune responses can be induced against multiple vaccine antigens coexpressed from an alphavirus replicon and suggested the possibility of engineering multivalent vaccines based upon alphavirus vectors for arenaviruses, filoviruses, and possibly other emerging pathogens.  相似文献   

12.
Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΔG/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΔG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.  相似文献   

13.
Experimental vaccines based on recombinant vesicular stomatitis viruses (VSV) expressing foreign viral proteins are protective in several animal disease models. Although these attenuated viruses are nonpathogenic in nonhuman primates when given by nasal, oral, or intramuscular routes, they are pathogenic in mice when given intranasally, and further vector attenuation may be required before human trials with VSV-based vectors can begin. Mutations truncating the VSV glycoprotein (G) cytoplasmic domain from 29 to 9 or 1 amino acid (designated CT9 or CT1, respectively) were shown previously to attenuate VSV growth in cell culture and pathogenesis in mice. Here we show that VSV recombinants carrying either the CT1 or CT9 deletion and expressing the human immunodeficiency virus (HIV) Env protein are nonpathogenic in mice, even when given by the intranasal route. We then carried out a detailed analysis of the CD8+ T-cell responses, including in vivo cytotoxic T-cell activity, induced by these vectors. When given by either the intranasal or intraperitoneal route, the VSV-CT9 vector expressing HIV Env elicited primary and memory CD8+ T-cell responses to Env equivalent to those elicited by recombinant wild-type VSV expressing Env. The VSV-CT1 vector also induced potent CD8+ T-cell responses after intraperitoneal vaccination, but was less effective when given by the intranasal route. The VSV-CT1 vector was also substantially less effective than the VSV-CT9 or wild-type vector at inducing antibody to Env. The VSV-CT9 vector appears ideal because of its lack of pathogenesis, propagation to high titers in vitro, and stimulation of strong cellular and humoral immune responses.  相似文献   

14.
15.
Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.  相似文献   

16.
Infectivity-enhancing antibodies to Ebola virus glycoprotein   总被引:4,自引:0,他引:4       下载免费PDF全文
Ebola virus causes severe hemorrhagic fever in primates, resulting in mortality rates of up to 100%, yet there are no satisfactory biologic explanations for this extreme virulence. Here we show that antisera produced by DNA immunization with a plasmid encoding the surface glycoprotein (GP) of the Zaire strain of Ebola virus enhances the infectivity of vesicular stomatitis virus pseudotyped with the GP. Substantially weaker enhancement was observed with antiserum to the GP of the Reston strain, which is much less pathogenic in humans than the Ebola Zaire and Sudan viruses. The enhancing activity was abolished by heat but was increased in the presence of complement system inhibitors, suggesting that heat-labile factors other than the complement system are required for this effect. We also generated an anti-Zaire GP monoclonal antibody that enhanced viral infectivity and another that neutralized it, indicating the presence of distinct epitopes for these properties. Our findings suggest that antibody-dependent enhancement of infectivity may account for the extreme virulence of the virus. They also raise issues about the development of Ebola virus vaccines and the use of passive prophylaxis or therapy with Ebola virus GP antibodies.  相似文献   

17.
The use of herpes simplex virus (HSV) vectors for in vivo gene therapy will require the targeting of vector infection to specific cell types in certain in vivo applications. Because HSV glycoprotein D (gD) imparts a broad host range for viral infection through recognition of ubiquitous host cell receptors, vector targeting will require the manipulation of gD to provide new cell recognition specificities in a manner designed to preserve gD's essential role in virus entry. In this study, we have determined whether an entry-incompetent HSV mutant with deletions of all Us glycoproteins, including gD, can be complemented by a foreign attachment/entry protein with a different receptor-binding specificity, the vesicular stomatitis virus glycoprotein G (VSV-G). The results showed that transiently expressed VSV-G was incorporated into gD-deficient HSV envelopes and that the resulting pseudotyped virus formed plaques on gD-expressing VD60 cells, albeit at a 50-fold-reduced level compared to that of wild-type gD. This reduction may be related to differences in the entry pathways used by VSV and HSV or to the observed lower rate of incorporation of VSV-G into virus envelopes than that of gD. The rate of VSV-G incorporation was greatly improved by using recombinant molecules in which the transmembrane domain of HSV glycoprotein B or D was substituted for that of VSV-G, but these recombinant molecules failed to promote virus entry. These results show that foreign glycoproteins can be incorporated into the HSV envelope during replication and that gD can be dispensed with on the condition that a suitable attachment/entry function is provided.  相似文献   

18.
Antibody-dependent enhancement of Ebola virus infection   总被引:5,自引:0,他引:5       下载免费PDF全文
Most strains of Ebola virus cause a rapidly fatal hemorrhagic disease in humans, yet there are still no biologic explanations that adequately account for the extreme virulence of these emerging pathogens. Here we show that Ebola Zaire virus infection in humans induces antibodies that enhance viral infectivity. Plasma or serum from convalescing patients enhanced the infection of primate kidney cells by the Zaire virus, and this enhancement was mediated by antibodies to the viral glycoprotein and by complement component C1q. Our results suggest a novel mechanism of antibody-dependent enhancement of Ebola virus infection, one that would account for the dire outcome of Ebola outbreaks in human populations.  相似文献   

19.
We describe a replication-competent, recombinant vesicular stomatitis virus (VSV) in which the gene encoding the single transmembrane glycoprotein (G) was deleted and replaced by an env-G hybrid gene encoding the extracellular and transmembrane domains of a human immunodeficiency virus type 1 (HIV-1) envelope protein fused to the cytoplasmic domain of VSV G. An additional gene encoding a green fluorescent protein was added to permit rapid detection of infection. This novel surrogate virus infected and propagated on cells expressing the HIV receptor CD4 and coreceptor CXCR4. Infection was blocked by SDF-1, the ligand for CXCR4, by antibody to CD4 and by HIV-neutralizing antibody. This virus, unlike VSV, entered cells by a pH-independent pathway and thus supports a pH-independent pathway of HIV entry. Additional recombinants carrying hybrid env-G genes derived from R5 or X4R5 HIV strains also showed the coreceptor specificities of the HIV strains from which they were derived. These surrogate viruses provide a simple and rapid assay for HIV-neutralizing antibodies as well as a rapid screen for molecules that would interfere with any stage of HIV binding or entry. The viruses might also be useful as HIV vaccines. Our results suggest wide applications of other surrogate viruses based on VSV.  相似文献   

20.
In this report, we show that the glycoprotein of vesicular stomatitis virus (VSV G) contains within its extracellular membrane-proximal stem (GS) a domain that is required for efficient VSV budding. To determine a minimal sequence in GS that provides for high-level virus assembly, we have generated a series of recombinant DeltaG-VSVs which express chimeric glycoproteins having truncated stem sequences. The recombinant viruses having chimeras with 12 or more membrane-proximal residues of the G stem, and including the G protein transmembrane-cytoplasmic tail domains, produced near-wild-type levels of particles. In contrast, viruses encoding chimeras with shorter or no G-stem sequences produced approximately 10- to 20-fold less. This budding domain when present in chimeric glycoproteins also promoted their incorporation into the VSV envelope. We suggest that the G-stem budding domain promotes virus release by inducing membrane curvature at sites where virus budding occurs or by recruiting condensed nucleocapsids to sites on the plasma membrane which are competent for efficient virus budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号