首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nakasako M  Iwata T  Matsuoka D  Tokutomi S 《Biochemistry》2004,43(47):14881-14890
Phototropin is a blue-light receptor of plants and comprises two light-receptive domains, LOV1 and LOV2, Ser/Thr kinase domain and one linker region connecting the LOV2 and the kinase domains. The LOV2 domain is thought to regulate predominantly the light-dependent autophosphorylation of the kinase domain, leading to cellular signaling cascades. In this study, we constructed recombinant LOV1, LOV2, and LOV2-linker polypeptides from phototropin 1 and phototropin 2 of Arabidopsis thaliana and studied their quaternary structures and light-dependent conformational changes by small-angle X-ray scattering. The molecular weights of the polypeptides determined from scattering intensities demonstrated the dimeric associations of LOV1 polypeptides of both isoforms. In contrast, while LOV2 and LOV2-linker polypeptides of phototropin 1 were homodimers, corresponding polypeptides of phototropin 2 existed as monomeric forms. Under blue-light irradiation, the LOV2-linker polypeptide of phototropin 1 displayed small but definite changes of the scattering profile. Through simulation of low-resolution molecular structures, the changes were likely explained as structural changes of the linker region and/or a movement of the region relative to the LOV2 domain. Light-induced profile changes were not observed in the Cys(512)Ala mutated LOV2-linker polypeptide of phototropin 1 losing the phototransformation capability. Thus, it was indicated that the photoreaction in the LOV2 domain probably caused the structural changes in the LOV2-linker polypeptide of phototropin 1. On the basis of the results, the interdomain interactions in phototropin are discussed.  相似文献   

2.
Harper SM  Christie JM  Gardner KH 《Biochemistry》2004,43(51):16184-16192
Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.  相似文献   

3.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that function to mediate a variety of adaptive processes that serve to optimize the photosynthetic efficiency of plants and thereby promote their growth. Light sensing by the phototropins is mediated by a repeated motif located within the N-terminal region of the protein designated the LOV domain. Although phototropins possess two LOV photosensors (LOV1 and LOV2), recent biophysical and structure-function analyses clearly indicate that the LOV2 domain plays a predominant role in regulating phototropin kinase activity owing to specific protein changes that occur in response to LOV2 photoexcitation. In particular, the central β-sheet scaffold plays a role in propagating the photochemical signal generated from within LOV2 to protein changes at the surface that are necessary for kinase activation.Key words: phototropin, LOV domain, FMN, cysteinyl adduct, amphipathic helix, receptor autophosphoryation  相似文献   

4.
Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin.  相似文献   

5.
Phototropins, originally detected by their blue light-dependent autophosphorylation, are plant photoreceptors involved in several blue light responses such as phototropism, chloroplast relocation, leaf expansion, rapid inhibition of hypocotyl growth, and stomatal opening. Three domains have been identified in phototropin sequences, two chromophore binding domains (LOV1 and LOV2) and a kinase domain. We describe here two additional domains, the N-terminus upstream of LOV1 and the hinge region between LOV1 and LOV2, as the regions for autophosphorylation; the phosphorylation sites were identified by site-directed mutagenesis as S27, S30, S274, S300, S317, S325, S332, and S349 of the PHOT1a sequence of Avena sativa. Investigation of the autophosphorylation in vivo revealed that serines close to the LOV1 domain are phosphorylated at lower fluence of blue light than the serines close to the LOV2 domain. Recovery of phosphorylation in vivo during a dark period after saturating irradiation is caused by dephosphorylation rather than by degradation of the phosphorylated form and new synthesis of nonphosphorylated phototropin. The results were obtained by a combination of autophosphorylation of phototropin with phosphorylation of recombinant domains by protein kinase A, which turned out to have the same site specificity as the phototropin kinase, followed by proteolysis and separation of phosphopeptides. With the knowledge of the phosphorylation sites, the physiological and biochemical consequences of autophosphorylation can now be approached by site-directed mutagenesis of phototropins.  相似文献   

6.
Phototropin is a membrane-bound UV-A/blue light photoreceptor of plants responsible for phototropism, chloroplast migration and stomatal opening. Characteristic are two LOV domains, each binding one flavin mononucleotide, in the N-terminal half and having a serine/threonine kinase domain in the C-terminal half of the molecule. We purified the N-terminal half of oat phototropin 1, containing LOV1 and LOV2 domains, as a soluble fusion protein with the calmodulin binding peptide (CBP) by expression in Escherichia coli. Gel chromatography showed that it was dimeric in solution. While the fusion protein CBP-LOV2 was exclusively monomeric in solution, the fusion protein CBP-LOV1 occurred as monomer and dimer. The proportion of dimer increased on prolonged incubation. We conclude that native phototropin is a dimer and that the LOV1 domain is probably responsible for dimerization.  相似文献   

7.
The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin. Heterologous expression studies have shown that both domains function as FMN-binding sites. Although three plant blue light photoreceptors, cry1, cry2, and phototropin, have been identified to date, the photochemical reactions underlying photoactivation of these light sensors have not been described so far. Herein, we demonstrate that the LOV domains of Avena sativa phototropin undergo a self-contained photocycle characterized by a loss of blue light absorbance in response to light and a spontaneous recovery of the blue light-absorbing form in the dark. Rate constants and quantum efficiencies for the photoreactions indicate that LOV1 exhibits a lower photosensitivity than LOV2. The spectral properties of the photoproduct produced for both LOV domains are unrelated to those found for photoreduced flavins and flavoproteins, but are consistent with those of a flavin-cysteinyl adduct. Flavin-thiol adducts are generally short-lifetime reaction intermediates formed during the flavoprotein-catalyzed reduction of protein disulfides. By site-directed mutagenesis, we have identified several amino acid residues within the putative chromophore binding site of LOV1 and LOV2 that appear to be important for FMN binding and/or the photochemical reactivity. Among those is Cys39, which plays an important role in the photochemical reaction of the LOV domains. Replacement of Cys39 with Ala abolished the photochemical reactions of both LOV domains. We therefore propose that light sensing by the phototropin LOV domains occurs via the formation of a stable adduct between the FMN chromophore and Cys39.  相似文献   

8.
Blue light-induced chloroplast accumulation and avoidance relocation movements are controlled by the blue light photoreceptor phototropin. The Arabidopsis thaliana genome has two phototropin genes encoding phot1 and phot2. Each of these photoreceptors contains two LOV (light oxygen and voltage) domains and a kinase domain. The LOV domains absorb blue light though an associated flavin mononucleotide chromophore, while the kinase domain is thought to be associated with signal transduction. The phototropins control not only chloroplast relocation movement, but also blue light-induced phototropic responses, leaf expansion and stomatal opening. Here I review the role of phototropin as a photoreceptor for chloroplast photorelocation movement. Electronic Publication  相似文献   

9.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

10.
The eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected. We restored this dysfunction in different phototropin complementation experiments. Complementation with the phototropin kinase fragment reduced the eyespot size, independent of light. Interestingly, overexpression of the N-terminal light, oxygen or voltage sensing domains (LOV1+LOV2) alone also affected eyespot size and phototaxis, suggesting that aside from activation of the kinase domain, they fulfill an independent signaling function in the cell. Moreover, phototropin is involved in adjusting the level of channelrhodopsin-1, the dominant primary receptor for phototaxis within the eyespot. Both the level of channelrhodopsin-1 at the onset of illumination and its steady state level during the light period are downregulated by phototropin, whereas the level of channelrhodopsin-2 is not significantly altered. Furthermore, a light intensity–dependent formation of a C-terminal truncated phototropin form was observed. We propose that phototropin is a light regulator of phototaxis that desensitizes the eyespot when blue light intensities increase.  相似文献   

11.
Okajima K  Matsuoka D  Tokutomi S 《FEBS letters》2011,585(21):3391-3395
Phototropin is a blue light receptor in plants and is thought to be a light-regulated protein kinase. Previously, we defined the role of the photoreceptive domains, LOV1 and 2, in the light activation of the kinase in Arabidopsis phototropin2 (phot2). In this study, photoregulation of the kinase in phototropin1 (phot1) was studied using LOV2-linker-kinase polypeptide. We designed a new substrate consisting of the N-terminal part of the phot1 with autophosphorylation sites. The LOV2-linker-kinase had the same spectroscopic properties as those of the LOV2 core and phosphorylated the substrate in a light-dependent manner. Amino acid substitution experiments proved that the phosphorylation comes from the activation of the kinase via photoreaction of LOV2.  相似文献   

12.
The plant blue light receptor phototropin comprises a protein kinase domain and two FMN-binding LOV domains (LOV1 and LOV2). Blue light irradiation of recombinant LOV domains is conducive to the addition of a cysteinyl thiolate group to carbon 4a of the FMN chromophore, and spontaneous cleavage of that photoadduct completes the photocycle of the receptor. The present study is based on (13)C NMR signal modulation observed after reconstitution of LOV domains of different origins with random libraries of (13)C-labeled FMN isotopologues. Using this approach, all (13)C signals of FMN bound to LOV1 and LOV2 domains of Avena sativa and to the LOV2 domain of the fern, Adiantum capillus-veneris, could be unequivocally assigned under dark and under blue light irradiation conditions. (13)C Chemical shifts of FMN are shown to be differently modulated by complexation with the LOV domains under study, indicating slight differences in the binding interactions of FMN and the apoproteins.  相似文献   

13.
In the plant blue-light sensor phototropin, illumination of the chromophoric LOV domains causes activation of the serine/threonine kinase domain. Flavin mononucleotide (FMN) is a chromophore molecule in the two LOV domains (LOV1 and LOV2), but only LOV2 is responsible for kinase activation. Previous studies reported an important role of an additional helix connected to the C-terminal of LOV2 (Jα helix) for the function of phototropin; however, it remains unclear how the Jα helix affects light-induced structural changes in LOV2. In this study we compared light-induced protein structural changes of the LOV2 domain of Arabidopsis phot1 in the absence (LOV2-core) and presence (LOV2-Jα) of the Jα helix by Fourier-transform infrared spectroscopy. Prominent peaks were observed only in the amide-I region (1650 (−)/1625 (+) cm−1) of LOV2-Jα at physiological temperatures (≥260 K), corresponding to structural perturbation of the α-helix. The peaks were diminished by point mutation of functionally important amino acids such as Phe-556 between FMN and the β-sheet, Gln-575 being hydrogen-bonded with FMN, and Ile-608 on the Jα helix. We thus conclude that a light signal is relayed from FMN through these amino acids and eventually changes the interaction between LOV2-core and the Jα helix in Arabidopsis phot1.  相似文献   

14.
Phototropin, a blue-light receptor protein of plants, triggers phototropic responses, chloroplast relocation, and opening of stomata to maximize the efficiency of photosynthesis. Phototropin is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) that absorb blue light and a serine/theroine kinase domain responsible for light-dependent autophosphorylation leading to cellular signaling cascades. Although the light-activated LOV2 domain is primarily responsible for subsequent activation of the kinase domain, it is unclear how conformational changes in the former transmit to the latter. To understand this molecular mechanism in Arabidopsis phototropin 2, we performed small-angle X-ray scattering analysis on a fragment composed of the LOV2 and kinase domains, which contained an Asp720Asn mutation that led to an absence of ATP binding activity. The scattering data were collected up to a resolution of 25 ?. The apparent molecular weight of the fragment estimated from scattering intensities demonstrated that the fragment existed in a monomeric form in solution. The fragment exhibited photoreversible changes in the scattering profiles, and the radii of gyration under dark and blue-light irradiation conditions were 32.4 and 34.8 ?, respectively. In the dark, the molecular shape restored from the scattering profile appeared as an elongated shape of 110 ? in length and 45 ? in width. The homology modeled LOV2 and kinase domains could be fitted to the molecular shape and appeared to make slight contact. However, under blue-light irradiation, a more extended molecular shape was observed. The changes in the molecular shape and radius of gyration were interpreted as a light-dependent positional shift of the LOV2 domain of approximately 13 ? from the kinase domain. Because the region connecting the LOV2 and kinase domains was categorized as a naturally unfolded polypeptide, we propose that the light-activated LOV2 domain triggers conformational changes in the linker region to separate the LOV2 and kinase domains.  相似文献   

15.

Background

Phototropins are UV-A/blue light receptor proteins with two LOV (Light-Oxygen-Voltage) sensor domains at their N terminus and a kinase domain at the C-terminus in photoautotrophic organisms. This is the first research report of a canonical phototropin from marine algae Ostreococcus tauri.

Methods

We synthesized core LOV1 (OtLOV1) domain-encoding portion of the phototropin gene of O. tauri, the domain was heterologously expressed, purified and assessed for its spectral properties and dark recovery kinetics by UV–Visible, fluorescence spectroscopy and mutational studies. Quaternary structure characteristics were studied by SEC and glutaraldehyde crosslinking.

Results

The absorption spectrum of OtLOV1 lacks the characteristic 361 nm peak shown by other LOV1 domains. It undergoes a photocycle with a dark state recovery time of approximately 30 min (τ = 300.35 s). Native OtLOV1 stayed as dimer in aqueous solution and the dimer formation was light and concentration independent. Mutating isoleucine at 43rd position to valine accelerated the dark recovery time by more than 10-fold. Mutating it to serine reduced sensitivity to blue light, but the dark recovery time remained unaltered. I43S mutation also destabilized the FMN binding to a great extent.

Conclusion

The OtLOV1 domain of the newly identified OtPhot is functional and the isoleucine at position 43 of OtLOV1 is the key residue responsible for fine-tuning the domain properties.

General significance

This is the first characterized LOV1 domain of a canonical phototropin from a marine alga and spectral properties of the domain are similar to that of the LOV1 domain of higher plants.  相似文献   

16.
The plant blue light receptor, phot1, a member of the phototropin family, is a plasma membrane-associated flavoprotein that contains two ( approximately 110 amino acids) flavin-binding domains, LOV1 and LOV2, within its N terminus and a typical serine-threonine protein kinase domain at its C terminus. The LOV (light, oxygen, and voltage) domains belong to the PAS domain superfamily of sensor proteins. In response to blue light, phototropins undergo autophosphorylation. E. coli-expressed LOV domains bind riboflavin-5'-monophosphate, are photochemically active, and have major absorption peaks at 360 and 450 nm, with the 450 nm peak having vibronic structure at 425 and 475 nm. These spectral features correspond to the action spectrum for phototropism in higher plants. Blue light excitation of the LOV2 domain generates, in less than 30 ns, a transient approximately 660 nm-absorbing species that spectroscopically resembles a flavin triplet state. This putative triplet state subsequently decays with a 4-micros time constant into a 390 nm-absorbing metastable form. The LOV2 domain (450 nm) recovers spontaneously with half-times of approximately 50 s. It has been shown that the metastable species is likely a flavin-cysteine (Cys(39) thiol) adduct at the flavin C(4a) position. A LOV2C39A mutant generates the early photoproduct but not the adduct. Titrations of LOV2 using chromophore fluorescence as an indicator suggest that Cys(39) exists as a thiolate.  相似文献   

17.
Chen E  Swartz TE  Bogomolni RA  Kliger DS 《Biochemistry》2007,46(15):4619-4624
Light-, oxygen-, or voltage-regulated (LOV1 and LOV2) domains bind flavin mononucleotide (FMN) and activate the phototropism photoreceptors phototropin 1 (phot1) and phototropin 2 (phot2) by using energy from absorbed blue light. Upon absorption of blue light, chromophore and protein conformational changes trigger the kinase domain for subsequent autophosphorylation and presumed downstream signal transduction. To date, the light-induced photocycle of the phot1 LOV2 protein is known to involve formation of a triplet flavin mononucleotide (FMN) chromophore followed by the appearance of a FMN adduct within 4 micros [Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., and Bogomolni, R. A. (2001) J. Biol. Chem. 276, 36493-36500] before thermal decay back to the dark state. To probe the mechanism by which the blue light information is relayed from the chromophore to the protein, nanosecond time-resolved optical rotatory dispersion (TRORD) spectroscopy, which is a direct probe of global secondary structure, was used to study the phot1 LOV2 protein in the far-UV region. These TRORD experiments reveal a previously unobserved intermediate species (tau approximately 90 micros) that is characterized by a FMN adduct chromophore and partially unfolded secondary structure (LOV390(S2)). This intermediate appears shortly after the formation of the FMN adduct. For LOV2, formation of a long-lived species that is ready to interact with a receptor domain for downstream signaling is much faster by comparison with formation of a similar species in other light-sensing proteins.  相似文献   

18.
Crosson S  Moffat K 《The Plant cell》2002,14(5):1067-1075
The phototropins are flavoprotein kinases that control phototropic bending, light-induced chloroplast movement, and stomatal opening in plants. Two flavin mononucleotide binding light, oxygen, or voltage (LOV) domains are the sites for initial photochemistry in these blue light photoreceptors. We have determined the steady state, photoexcited crystal structure of a flavin-bound LOV domain. The structure reveals a unique photochemical switch in the flavin binding pocket in which the absorption of light drives the formation of a reversible covalent bond between a highly conserved Cys residue and the flavin cofactor. This provides a molecular picture of a cysteinyl-flavin covalent adduct, the presumed signaling species that leads to phototropin kinase activation and subsequent signal transduction. We identify closely related LOV domains in two eubacterial proteins that suggests the light-induced conformational change evident in this structure is an ancient biomolecular response to light, arising before the appearance of plants.  相似文献   

19.
Iwata T  Nozaki D  Tokutomi S  Kandori H 《Biochemistry》2005,44(20):7427-7434
Phototropin (phot) is a blue-light photoreceptor for phototropic responses, relocation of chloroplasts, and stomata opening in plants. Phototropin has two chromophore-binding domains named LOV1 and LOV2 in its N-terminal half, each of which binds a flavin mononucleotide (FMN) noncovalently. The C-terminal half is a Ser/Thr kinase. A transgenic study of Arabidopsis suggested that only LOV2 domain is necessary for the kinase activity, whereas X-ray crystallographic structures of LOV1 and LOV2 domains are almost identical. These facts imply that the detailed structures and/or structural changes are different between LOV1 and LOV2 domains. In this study, we compared light-induced structural changes of the LOV1 and LOV2 domains of a phototropin, Adiantum phytochrome3 (phy3), by means of UV-visible and Fourier transform infrared (FTIR) spectroscopy. Photochemical properties of an adduct formation between FMN and a cysteine are essentially similar between phy3-LOV1 and phy3-LOV2. On the other hand, the S-H group of the reactive cysteine forms a hydrogen bond in phy3-LOV1, which is strengthened at low temperatures. This is possibly correlated with the fact that no adduct formation takes place for phy3-LOV1 at 77 K as revealed by the UV-visible absorption spectra. The most prominent difference was seen in the amide-I vibration that monitors the secondary structure of peptide backbone. Protein structural changes in phy3-LOV2 involve the regions of loops, alpha-helices, and beta-sheets, which differ significantly among various temperatures. Extended protein structural changes are probably correlated with the signal transduction activity of LOV2. In contrast, protein structural changes were very small in phy3-LOV1, and they were almost temperature independent. The photocycle of phy3-LOV1 takes 3.1 h, being more than 100 times longer than that of phy3-LOV2. These facts suggest that Adiantum phy3-LOV1 does not work for light sensing, being consistent with the previous transgenic study of Arabidopsis. It is likely that plants utilize a unique protein architecture (LOV domain) for different functions by regulating their protein structural changes.  相似文献   

20.
Phototropins (phot1 and phot2) are autophosphorylating serine/threonine kinases that function as photoreceptors for phototropism, light-induced chloroplast movement, and stomatal opening in Arabidopsis. The N-terminal region of phot1 and phot2 contains two specialized PAS domains, designated LOV1 and LOV2, which function as binding sites for the chromophore flavin mononucleotide (FMN). Both LOV1 and LOV2 undergo a self-contained photocycle, which involves the formation of a covalent adduct between the FMN chromophore and a conserved active-site cysteine residue (Cys39). Replacement of Cys39 with alanine abolishes the light-induced photochemical reaction of LOV1 and LOV2. Here we have used the Cys39Ala mutation to investigate the role of LOV1 and LOV2 in regulating phototropin function. Photochemical analysis of a bacterially expressed LOV1 + LOV2 fusion protein indicates that LOV2 functions as the predominant light-sensing domain for phot1. LOV2 also plays a major role in mediating light-dependent autophosphorylation of full-length phot1 expressed in insect cells and transgenic Arabidopsis. Moreover, photochemically active LOV2 alone in full-length phot1 is sufficient to elicit hypocotyl phototropism in transgenic Arabidopsis, whereas photochemically active LOV1 alone is not. Further photochemical and biochemical analyses also indicate that the LOV1 and LOV2 domains of phot2 exhibit distinct roles. The significance for the different roles of the phototropin LOV domains is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号