首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
哺乳动物中枢神经系统中D构象丝氨酸的区域性高浓度分布与N-甲基-D-天冬氨酸(NMDA)受体相一致.它主要由丝氨酸消旋酶将L丝氨酸直接消旋而来,也可能通过肠道菌群产生后吸收至体内,最终被D构象氨基酸氧化酶氧化.这种从胶质细胞而非神经元来源的“异常”构象氨基酸作为一种新型神经递质,不仅更新了传统“神经递质”的定义,而且为许多与NMDA受体过度兴奋或表达下调相关的神经系统疾病治疗提出了新的线索.  相似文献   

2.
TRPV1(transient receptor potential vanilloid 1)是在机体广泛分布的非选择性阳离子通道,能被氢离子、高温以及其它内源性和外源性配体激活.其在外周神经系统中主要参与伤害性高温的感受以及痛觉过敏等生理机制.TRPV1在中枢神经系统中功能的研究进展主要体现在突触传递,体温调节,痛觉的调制和细胞凋亡等方面.TRPV1的激活降低突触前谷氨酸的释放及增强已存在的突触后AMPA受体的作用,从而增强了突触传递效能.外周的TRPV1通过激活能够抑制血管的收缩和生热作用,从而抑制体温的升高,当TRPV1被阻断时就发生体温过高,而TRPV1体温调节的中枢作用机制可能是通过直接作用于体温调节中枢.脑干的痛觉调制环路的激活TRPV1可以引起谷氨酸盐的释放,进而激活突触后I类mGlu受体以及NMDA受体,从而起到镇痛的功能.另外近年发现TRPV1在中枢也参与呕吐、呼吸、心率及血压的调节.  相似文献   

3.
外泌体是一类由细胞分泌至胞外的囊泡,生物发生主要涉及细胞质膜的两次内陷、多囊泡体的形成以及外泌体的释放。外泌体具有丰富多样的内含物,包括一些标志性膜蛋白、可溶蛋白、各类RNA分子和DNA片段等。细胞可以通过分泌和接受外泌体来实现细胞间的信号交流,外泌体通过膜上携带的配体分子与其他细胞质膜表面的受体相互作用,从而激活细胞的信号转导或与受体细胞质膜发生融合释放内容物进入胞质来发挥调节功能。在中枢神经系统中,神经元及各类神经胶质细胞分泌的神经外泌体可以介导布线式的突触信号传递,但主要还是以容积传递的方式发挥类似神经调质的功能。本文详细阐述了外泌体的生物发生过程及部分重要的功能性成分,就神经外泌体在发生、内容物分选和受控释放三个方面的特性与突触囊泡进行比较,总结了神经外泌体在中枢神经系统中发挥的生理功能及其在神经退行性疾病和抑郁症发生、发展中作用的研究进展,并对外泌体在神经系统疾病早期诊断及靶向治疗方面的应用前景进行了展望。  相似文献   

4.
Defective responses to DNA double strand breaks (DSBs) in the nervous system can lead to neurodegeneration or tumorigenesis. A key player in the repair of DNA DSBs is the tumor suppressor BRCA2, an essential component of the homologous recombination repair pathway and the Fanconi Anemia complex. We recently demonstrated that BRCA2 was required for normal neurogenesis and prevention of medulloblastoma brain tumors. Here, we discuss how this study contributes both to our understanding of BRCA2 functions in vivo, and the tissue-specific requirements for DNA repair and damage-signaling pathways.  相似文献   

5.
The nervous system comprises a remarkably diverse and complex network of different cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in the spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS and highlight exciting new work in the field that has identified roles for these cells in CNS development, maintenance, and plasticity.Microglia are one of the most enigmatic and understudied populations in the brain. Until recently, most of what was known about their function has been associated with their rapid and robust responses to disease and injury (Ransohoff and Perry 2009; Graeber 2010; Ransohoff and Cardona 2010). The idea that microglia could be performing normal, homeostatic functions is a relatively new concept, galvanized by pioneering in vivo imaging studies, which revealed that the processes of “resting” microglia are highly motile in the intact, healthy adult brain (Davalos et al. 2005; Nimmerjahn et al. 2005). Remarkably, it is estimated that these microglial processes survey the entire brain parenchyma within a matter of hours, raising many questions about the significance of this immune surveillance system.Since these initial findings, there has been a surge in the field to examine functional roles of microglia in the healthy central nervous system (CNS), with a primary focus on postnatal development. This focus was, to a large extent, incited by a landmark fate-mapping study in the mouse showing that microglia develop from primitive myeloid progenitors in the embryonic yolk sac and begin to colonize the brain during early embryonic development (approximately embryonic day 9.5 [∼E9.5] in the mouse) (Ginhoux et al. 2010). Given this early colonization, microglia are poised to play important roles in shaping the developing CNS and contributing to overall nervous system function. Indeed, recent work has shown that microglia in the developing CNS can physically interact with neuronal soma and synapses in response to changes in neural activity, and data implicate microglia in many functions required to build and wire the developing CNS ranging from neurogenesis to synaptic pruning (Tremblay 2011; Tremblay et al. 2011; Kettenmann et al. 2013; Schafer et al. 2013; Wake et al. 2013; Salter and Beggs 2014). Furthermore, emerging work in the juvenile and adult reveal that these interactions and functions observed in the postnatal brain occur more broadly to affect plasticity over the life span of the animal, ultimately affecting behavior.In this chapter, we review the latest findings in the field on microglia function in CNS development and plasticity. Our goal is to give a comprehensive and critical perspective of this relatively new area of research and highlight new questions. Furthermore, we discuss novel strategies to manipulate microglia function that will contribute to our understanding of these cells in the healthy nervous system and, ultimately, help to identify mechanisms of disease.  相似文献   

6.
A need exists for mapping the protein profiles in the human brain both during normal and disease conditions. Here we studied 800 antibodies generated toward human proteins as part of a Human Protein Atlas program and investigated their suitability for detailed analysis of various levels of a rat brain using immuno-based methods. In this way, the parallel, rather limited analysis of the human brain, restricted to four brain areas (cerebellum, cerebral cortex, hippocampus, and lateral subventricular zone), could be extended in the rat model to 25 selected areas of the brain. Approximately 100 antibodies (12%) revealed a distinct staining pattern and passed validation of specificity using Western blot analysis. These antibodies were applied to coronal sections of the rat brain at 0.7-mm intervals covering the entire brain. We have now produced detailed protein distribution profiles for these antibodies and acquired over 640 images that form the basis of a publicly available portal of an antibody-based Rodent Brain Protein Atlas database (www.proteinatlas.org/rodentbrain). Because of the systematic selection of target genes, the majority of antibodies included in this database are generated against proteins that have not been studied in the brain before. Furthermore optimized tissue processing and colchicine treatment allow a high quality, more extended annotation and detailed analysis of subcellular distributions and protein dynamics.The brain is the most complex organ in the mammalian body. It processes sensory information from our external environment; produces behavior, emotions, and memories; and regulates the internal body homeostasis. To fulfill these diverse functions the brain harbors a myriad of neuronal networks processing information and connecting input and output systems. Because of the highly specialized functions, each neuron population is neurochemically specified expressing the necessary sets of proteins. Consequently a large number of genes are expressed in the mammalian brain. Based on microarray and in situ hybridization studies it is estimated that ∼55–80% of all mouse genes are expressed in the brain (1, 2) (gene expression during developmental stages and pathological conditions not included). Interestingly 70% of these genes are expressed in different cell populations each covering less than 20% of the brain, indicating the complexity of the brain and the specialization of individual populations of neurons (1).The success of humans as a species relies on our mental abilities, a result of brain development during evolution. The human brain is distinguished from other mammalian brains by its size; especially the neocortex involved in higher cognitive functions is greatly enlarged in humans. Despite this difference, the human brain has many similarities to brains of other mammalian species, and to some extent mammalian brains have a well preserved basic architecture (basic uniformity) (for reviews, see Refs. 3 and 4). Therefore, most human brain nuclei and connections have orthologs in other mammalian species ranging from great apes to rodents.Genetic variation underpins interspecies variation in gene expression and assembly of proteins. The human and rat genomes encode similar numbers of genes of which the majority have persisted throughout evolution without deletion or duplication (5). It is evident that small changes in protein structure and altered expression levels of proteins influence brain development and form the basis of interspecies differences. However, most human genes have orthologs in rodents, and for most cell types in the brain their neurochemical specification has been preserved throughout evolution. Because of genomic homology and similarity in basic layout of the mammalian brain as well as the preservation of neurochemical specification of subsets of neurons throughout evolution, animal models have shown their value in medical neurosciences (6).Advances in science are largely dependent on the processing of available information and the generation of new concepts and are driven by innovation and availability of new technologies. Recently mRNA-based techniques have emerged as an effective tool for genome wide analysis of expression levels in entire organs or disease-affected tissue. Results obtained from these studies are a source for identification of novel key molecules and have a predictive value to estimate changes in protein synthesis. There are several ongoing initiatives focusing on the expression profiles of the mammalian brain. The Allen Brain Atlas has produced detailed in situ hybridization profiles for over 20,000 genes in the mouse brain (1). The Gene Expression Nervous System Atlas (GENSAT) project uses enhanced green fluorescent protein reporter genes incorporated into bacterial artificial chromosome transgenic mice to visualize the expression profiles of the most important genes (7). This strategy can result in the identification of expressing cell types as the detailed morphology of enhanced green fluorescent protein-expressing cells is apparent. The Brain Maps project has a large collection of mammalian and non-mammalian brain maps using “classical” histochemical techniques but also includes a few protein distribution profiles visualized using immunohistochemistry (8).We previously described the possibilities of using antibodies raised against human proteins on rodent brain tissue (9). Here we show the first efforts to produce detailed proteome wide large scale tissue profiling maps of a mammalian brain using an antibody-based proteomics approach. In addition to the available, mentioned information on mRNA levels (Allen Brain Atlas), gene expression profiles (Gene Expression Nervous System Atlas), and detailed neuroanatomy (Brain Maps), antibody-based proteomics provide new information on cellular and subcellular distribution of gene products. This information will increase general knowledge and understanding of the organization and functioning of the brain. The study is based on antibodies generated as part of the Human Protein Atlas program aimed at exploring the protein expression patterns in normal and cancer tissues using tissue microarray-based immunohistochemistry and fluorescence-based confocal microscopy (10).The Human Proteome Resource center aims to produce monospecific antibodies against every human gene. So far, the distribution profiles of 3,000 proteins in 48 human tissues, including four brain areas (cerebellum, cerebral cortex, the hippocampal formation, and lateral subventricular zone), and 20 cancers are available (Human Protein Atlas). The antibodies generated within the framework of this program are based on antigens selected as unique regions for each individual protein, called protein epitope signature tags (PrESTs)1 (11, 12). Over 5,000 antibodies have been generated and validated using Western blot analysis and protein arrays (13). The smaller size of the rat brain allows analysis of many brain areas and exposure of the antibodies to a very wide variety of proteins. Furthermore tissue can be processed under perfect conditions optimizing tissue antigenicity with flawless tissue morphology.Here we describe the initial large scale mapping of 89 protein distribution profiles in 25 selected rat brain areas. By exposing systematically sampled rat brain tissue to our collection of monospecific antibodies a more detailed protein atlas of the mammalian brain was produced, expanding the four brain areas available in the human protein atlas to 25 brain areas (Fig. 1) involved in higher cognitive functions, sensation, emotion, maintenance of internal homeostasis, sleep, and motor and sexual behaviors. A database portal has been created to show selected images from the various regions of the brain.Open in a separate windowFig. 1.Schematic overview of the 25 selected brain areas. Included are telencephalon (medial septum, lateral septum, horizontal/vertical diagonal band, prefrontal/cingulate/somatosensory/piriform/entorhinal cortex, ventral pallidum, stria terminalis, globus pallidus, caudate putamen, amygdala (basolateral, central, and medial), hippocampus, and dentate gyrus); diencephalon (preoptic area (A), supraoptic nucleus (A), suprachiasmatic nucleus (A), paraventricular nucleus (A and B), arcuate nucleus (B), median eminence (B), and thalamus); mesencephalon (substantia nigra, ventral tegmental area, and raphe nucleus (dorsal and median)); pons (locus caeruleus (C)); and cerebellum.  相似文献   

7.
POU蛋白调节中枢神经系统发育   总被引:1,自引:0,他引:1  
POU蛋白是一组DNA特异的转录调节因子,属同源异形序列超家族.发育过程中,POU蛋白编码基因在中枢神经系统各部位的时空性表达决定神经细胞的发育与分化.  相似文献   

8.
9.
Since the identification of 2-phenylethylamine (β-phenylethylamine; PE) as a biogenic amine, there has been much discussion about what role, if any, it may have in the CNS. Indeed, the low endogenous concentration of PE in the brain and its relatively low potency in behavioral and pharmacological experiments have led some researchers to conclude that perhaps PE possessed no physiological role at all but that it was merely a metabolic by-product. Our findings have caused us to conclude otherwise, and in this article we review the neurochemical, neuropharmacological, and neurophysiological findings that lead us to propose that PE is a neuromodulator of catecholamine neurotransmission in the CNS.  相似文献   

10.
11.
12.
Vimentin in the Central Nervous System   总被引:7,自引:0,他引:7  
Intermediate filament proteins were identified by two-dimensional gel electrophoresis in urea extracts of rat optic nerves undergoing Wallerian degeneration and in cytoskeletal preparations of rat brain and spinal cord during postnatal development. The glial fibrillary acidic (GFA) protein and vimentin were the major optic nerve proteins following Wallerian degeneration. Vimentin was a major cytoskeletal component of newborn central nervous system (CNS) and then progressively decreased until it became barely identifiable in mature brain and spinal cord. The decrease of vimentin occurred concomitantly with an increase in GFA protein. A protein with the apparent molecular weight of 61,000 and isoelectric point of 5.6 was identified in both cytoskeletal preparations of brain and spinal cord, and in urea extracts of normal optic nerves. The protein disappeared together with the polypeptides forming the neurofilament triplet in degenerated optic nerves.  相似文献   

13.
14.
A study of 57 cases of affection of the central nervous system associated with chickenpox diagnosed and treated at The Hospital for Sick Children in Toronto between 1956 and 1967, inclusive, is presented. The commonest type, the cerebellar variety (50%), had an excellent prognosis. In the next commonest, the cerebral type (40%), the mortality rate was 35% but there was a low incidence of permanent sequelae in the surviving patients. A small group classed as aseptic meningitis was defined and one case of myelitis was reviewed.  相似文献   

15.
16.
17.
18.
19.
基质金属蛋白酶与中枢神经系统感染   总被引:1,自引:0,他引:1  
基质金属蛋白酶(MMPs)是一组合锌的能降解细胞外基质的中性蛋白酶家族.目前认为MMPs尤其是明胶酶(MMP-2,MMP-9)与中枢神经系统感染关系密切.通常它们以酶原的形式存在,一旦活化,则迅速攻击血脑屏障,降解基底膜的一些基质蛋白,破坏内皮细胞的紧密连接蛋白,促进脑水肿的形成和炎细胞的浸润.近年来研究发现,中枢神经系统感染后MMPs表达增加.导致血脑屏障损害及血管源性脑水肿,并参与中枢神经系统免疫反应,促进感染的病理生理过程.  相似文献   

20.
Lectin Receptors in Central Nervous System Myelin   总被引:14,自引:12,他引:2  
Abstract: Proteins from central nervous system myelin were separated by high-resolution, sodium dodecyl sulfate-pore gradient slab gel electrophoresis and the glycoproteins were detected by autoradiography after direct application of radioiodinated lectins. A surprising heterogeneity of lectin binding proteins was found associated with this highly purified membrane fraction. Iodinated wheat germ agglutinin, which has a monosaccharide specificity for N-acetyl-D-glucosamine and N-acetylneuraminic acid, revealed six major bands and two minor bands. By correlating the molecular weights (Mr) of radioiodinated protein standards with the gel concentration at the position reached by the protein (%T) using the relationship log(Mr) versus log(%T) for gradient gel systems, molecular weight estimates of 128, 300, 109, 800, 75, 300, 48, 800, 26, 100 and 23, 700 were obtained for the major glycoprotein bands and molecular weights of 98, 300 and 86, 600 for the minor bands. When the isolated myelin was extracted with chloroform-methanol-a procedure that removes the major myelin proteins, including the proteolipid protein and most of the basic proteins and hence concentrates the minor high molecular weight proteins-and analyzed after gradient gel electrophoresis, additional glycoproteins of molecular weights 607, 700, 196, 900, 175, 100, 61, 800, 52, 200 and 42, 600 were resolved with this lectin. Radioiodinated soybean agglutinin, which has a specificity for N-acetyl-D-galactosamine and D-galactose, revealed seven bands, three of which were unique to this lectin (19, 600, 19, 100 and 17,000). Iodinated concanavalin A (d -mannose, d -glucose) revealed bands similar to the wheat germ agglutinin as well as additional bands of 40, 300, 37, 300, 35, 700, 21, 800 and 20, 400. The glycoprotein specificity for these lectin binding components was demonstrated by hapten carbohydrate binding inhibition and by organic solvent extraction for removal of glycolipids. Based on these experiments using three lectins with different carbohydrate specificity, 22 lectin-reactive components were identified; however, six of these bands were removed by chloroform-methanol extraction. The variations observed in the lectin binding capacity for these different bands suggest possible carbohydrate heterogeneity for these individual glycoproteins. Although many of these bands may be dissociated subunits (monomeric polypeptides) of oligomeric complexes, the observed multiplicity of these quantitatively minor glycoproteins associated with the purified myelin membrane implies a more intricate molecular organization for the myelin sheath complex than previously believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号