首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glutathione transferase from human mononuclear leucocytes with high activity towards trans-stilbene oxide (GT-tSBO) was purified. GT-tSBO is expressed in only about 50% of the individuals studied. As judged from activity measurements, immunological studies and the fact that only those individuals who express glutathione transferase mu have high activity towards trans-stilbene oxide, it is concluded that the hepatic transferase mu is identical with the glutathione transferase (GT-tSBO) in mononuclear leucocytes.  相似文献   

2.
A tertiary model of the human GSTT2 Theta class glutathione transferase is presented based on the recently solved crystal structure of a related thetalike isoenzyme from Lucilia cuprina. Although the N-terminal domains are quite homologous, the C-terminal domains share less than about 20% identity. The model is used to consolidate the role of Ser 11 in the active site of the enzyme as well as to identify other residues and mechanisms of likely catalytic importance. The T2 subfamily of theta class enzymes have been shown to inactivate reactive sulfate esters arising from arylmethanols. A possible reaction pathway involving the conjugation of glutathione with one such sulfate ester, 1-menaphthyl-sulfate, is described. It is also proposed that the C-terminal region of the enzyme plays an important role in allowing substrate access to the active site. Proteins 27:118–130 © 1997 Wiley-Liss, Inc.  相似文献   

3.
Glutathione transferase P1-1 is over expressed in some cancer cells and contributes to detoxification of anticancer drugs, leading to drug-resistant tumors. The inhibition of human recombinant GSTP1-1 by natural plant products was investigated using 10 compounds isolated from plants indigenous to Southern and Central Africa. Monochlorobimane and 1-chloro-2,4-dinitrobenzene were used to determine GST activity. Each test compound was screened at 33 and 100 µM. Isofuranonapthoquinone (1) (from Bulbine frutescens) showed 68% inhibition at 33 µM, and sesquiterpene lactone (2) (from Dicoma anomala) showed 75% inhibition at 33 μM. The IC50 value of 1 was 6.8 μM. The mode of inhibition was mixed, partial (G site) and noncompetitive (H site) with Ki values of 8.8 and 0.21 µM, respectively. Sesquiterpene 2 did not inhibit the CDNB reaction. Therefore, isofuranonapthoquinone 1 needs further investigations in vivo because of its potent inhibition of GSTP1-1 in vitro.  相似文献   

4.
Treatment of human peripheral blood mononuclear leukocytes with phytohaemmaglutinin and the tumour promoter teleocidin, results in the production of large amounts of interferon-gamma and significant amounts of a novel interferon-like substance which we tentatively class as interferon-delta. This novel interferon type possesses all the important characteristics of classical interferon but, of various cell types tested, has antiviral activity only in trisomy-21 human fibroblasts. It differs decisively from previously identified interferon types in its antigenic, biological and physicochemical properties.  相似文献   

5.
Glutathione‐S‐transferases have been identified in all the living species examined so far, yet little is known about their function in marine organisms. In a previous report, the recently identified GST from Antarctic bivalve Laternula elliptica (LeGST) was classified into the rho class GST, but there are several unique features of LeGST that may justify reclassification, which could represent specific shellfish GSTs. Here, we determined the crystal structure of LeGST, which is a shellfish specific class of GST. The structural analysis showed that the relatively open and wide hydrophobic H‐site of the LeGST allows this GST to accommodate various substrates. These results suggest that the H‐site of LeGST may be the result of adaptation to their environments as sedentary organisms. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Summary High glutathione transferase activity towards trans-stilbene oxide has been observed in resting mononuclear leukocytes only in a portion of the individuals examined. Approximately 46% of a population of 248 individuals demonstrated this high activity. In addition, eight families have been investigated in order to elucidate the hereditary transmission of this activity. The results are consistent with a dominant expression of a single gene located on an autosomal chromosome for this high glutathione transferase activity.  相似文献   

7.
Arsenic‐based compounds are paradoxically both poisons and drugs. Glutathione transferase (GSTP1‐1) is a major factor in resistance to such drugs. Here we describe using crystallography, X‐ray absorption spectroscopy, mutagenesis, mass spectrometry, and kinetic studies how GSTP1‐1 recognizes the drug phenylarsine oxide (PAO). In conditions of cellular stress where glutathione (GSH) levels are low, PAO crosslinks C47 to C101 of the opposing monomer, a distance of 19.9 Å, and causes a dramatic widening of the dimer interface by approximately 10 Å. The GSH conjugate of PAO, which forms rapidly in cancerous cells, is a potent inhibitor (Ki = 90 nM) and binds as a di‐GSH complex in the active site forming part of a continuous network of interactions from one active site to the other. In summary, GSTP1‐1 can detoxify arsenic‐based drugs by sequestration at the active site and at the dimer interface, in situations where there is a plentiful supply of GSH, and at the reactive cysteines in conditions of low GSH.  相似文献   

8.
Cigarette smoking is known to be a risk factor for several chronic and neoplastic diseases. Many compounds formed by cigarette burning, ranging from particulate materials to water solutes and gaseous extracts, are considered to be noxious agents, and many biochemical and molecular mechanisms have been proposed for the toxic effects of cigarette smoke. The oral cavity and the upper respiratory tract represent the first contact areas for smoke compounds; even a single cigarette can produce marked effects on some components of the oral cavity, either chemical compounds, such as glutathione and enzymes, or cellular elements, such as polymorphonuclear leukocytes. Several studies suggest a protective role of glutathione against the noxious effects of tobacco smoke; the sulphydril groups of glutathione, in fact, could react with some smoke products, such as unsaturated aldehydes, leading to the formation of harmless intermediate compounds and simultaneously preventing the inactivation of metabolically essential molecules, such as some enzymes. In this paper we analyse the effect of a filter containing glutathione on the respiratory burst of polymorphonuclear leukocytes exposed to aqueous extract of cigarette smoke, measuring their chemiluminescence activity. The results of this paper indicate that the GSH-containing filter has a likely protective effect against the inhibition of cigarette smoke extract on polymorphonuclear leukocyte activity.  相似文献   

9.
Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.  相似文献   

10.
The glutathione transferases (GSTs) from maize (Zea mays L.) with activities toward the chloroacetanilide herbicide metolachlor and the diphenyl ether herbicide fluorodifen were fractionated into two pools based on binding to affinity columns. Pool 1 GSTs were retained on Orange A agarose and were identified as isoenzymes Zea mays (Zm) GST I-I, Zm GST I-II and Zm GST I-III, which have been described previously. Pool 2 GSTs selectively bound to S-hexyl-glutathione-Sepharose and were distinct from the pool 1 GSTs, being composed of a homodimer of 28.5 kDa subunits, termed Zm GST V-V, and a heterodimer of the 28.5 kDa polypeptide and a 27.5 kDa subunit, termed Zm GST V-VI. Using an antibody raised to Zm GST V-VI, a cDNA expression library was screened and a Zm GST V clone identified showing sequence similarity to the type-III auxin-inducible GSTs previously identified in tobacco and other dicotyledenous species. Recombinant Zm GST V-V showed high GST activity towards the diphenyl ether herbicide fluorodifen, detoxified toxic alkenal derivatives and reduced organic hydroperoxides. Antibodies raised to Zm GST I-II and Zm GST V-VI were used to monitor the expression of GST subunits in maize seedlings. Over a 24 h period the Zm GST I subunit was unresponsive to chemical treatment, while expression of Zm GST II was enhanced by auxins, herbicides, the herbicide safener dichlormid and glutathione. The Zm GST V subunit was more selective in its induction, only accumulating significantly in response to dichlormid treatment. During development Zm GST I and Zm GST V were expressed more in roots than in shoots, with Zm GST II expression limited to the roots.  相似文献   

11.
Hitchens TK  Mannervik B  Rule GS 《Biochemistry》2001,40(39):11660-11669
Glutathione transferases comprise a large family of cellular detoxification enzymes that function by catalyzing the conjugation of glutathione (GSH) to electron-deficient centers on carcinogens and other toxins. NMR methods have been used to characterize the structure and dynamics of a human class pi enzyme, GST P1-1, in solution. Resonance assignments have been obtained for the unliganded enzyme and the GSH and S-hexylglutathione (GS-hexyl) complexes. Differences in chemical shifts between the GSH and GS-hexyl complexes suggest more extensive structural differences between these two enzyme-ligand complexes than detected by previous crystallographic methods. The NMR studies reported here clearly show that an alpha-helix (alpha2) within the GSH binding site exists in multiple conformations at physiological temperatures in the absence of ligand. A single conformation of alpha2 is induced by the presence of either GSH or GS-hexyl or a reduction in temperature to below 290 K. The large enthalpy of the transition ( approximately 150 kJ/mol) suggests a considerable structural rearrangement of the protein. The Gibbs free energy for the transition to the unfolded form is on the order of -4 to -6 kJ/mol at physiological temperatures (37 degrees C). This order-to-disorder transition contributes substantially to the overall thermodynamics of ligand binding and should be considered in the design of selective inhibitors of class pi glutathione transferases.  相似文献   

12.
谷胱甘肽S-转移酶与昆虫抗药性的关系   总被引:11,自引:2,他引:11  
吕敏  刘惠霞  吴文君 《昆虫知识》2003,40(3):204-207,228
谷胱甘肽S -转移酶 (GSTs)是一种对杀虫剂产生代谢抗性的重要酶系 ,参与许多分子的解毒机制 ,并可转运一些重要的亲脂性化合物。GSTs在保护组织以抵御氧化侵害及氧化压力中起重要的作用。GSTs是昆虫及螨类对有机磷类杀虫剂产生抗生的重要因素  相似文献   

13.
Theta class glutathione transferases (GST) from various species exhibit markedly different catalytic activities in conjugating the tripeptide glutathione (GSH) to a variety of electrophilic substrates. For example, the human theta 1-1 enzyme (hGSTT1-1) is 440-fold less efficient than the rat theta 2-2 enzyme (rGSTT2-2) with the fluorogenic substrate 7-amino-4-chloromethyl coumarin (CMAC). Large libraries of hGSTT1-1 constructed by error-prone PCR, DNA shuffling, or saturation mutagenesis were screened for improved catalytic activity towards CMAC in a quantitative fashion using flow cytometry. An iterative directed evolution approach employing random mutagenesis in conjunction with homologous recombination gave rise to enzymes exhibiting up to a 20,000-fold increase in k(cat)/K(M) compared to hGSTT1-1. All highly active clones encoded one or more mutations at residues 32, 176, or 234. Combinatorial saturation mutagenesis was used to evaluate the full complement of natural amino acids at these positions, and resulted in the isolation of enzymes with catalytic rates comparable to those exhibited by the fastest mutants obtained via directed evolution. The substrate selectivities of enzymes resulting from random mutagenesis, DNA shuffling, and combinatorial saturation mutagenesis were evaluated using a series of distinct electrophiles. The results revealed that promiscuous substrate activities arose in a stochastic manner, as they did not correlate with catalytic efficiency towards the CMAC selection substrate. In contrast, chimeric enzymes previously constructed by homology-independent recombination of hGSTT-1 and rGSTT2-2 exhibited very different substrate promiscuity profiles, and showed a more defined relationship between evolved and promiscuous activities.  相似文献   

14.
15.
16.
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.  相似文献   

17.
Glutathione S‐transferases (GSTs) are the superfamily of multifunctional detoxification isoenzymes and play an important role in cellular signaling. In the present study, potential inhibition effects of chalcones were tested against human GST. For this purpose, GST was purified from human erythrocytes with 5.381 EU?mg?1 specific activity and 51.95% yield using a GSH–agarose affinity chromatographic method. The effects of chalcones on in vitro GST activity were tested at various concentrations. Ki constants of chalcones were found in the range of 7.76–41.93 μM. According to the results, 4‐fluorochalcone showed a better inhibitory effect compared with the other compounds. The inhibition mechanisms of 2'‐hydroxy‐4‐methoxychalcone and 4‐methoxychalcone were noncompetitive, whereas the inhibition mechanisms of 4'‐ hydroxychalcone, 4‐ fluorochalcone, and 4,4'‐ diflurochalcone were competitive.  相似文献   

18.
Cytosolic GSH transferases have been purified from rat lung by affinity chromatography followed by chromatofocusing. On the criteria of order of elution, substrate specificity, apparent subunit Mr, sensitivity to inhibitors, and reaction with antibodies, transferase subunits equivalent to subunits 2, 3, and 4, in the binary combinations occurring in liver, were identified. However, subunit 1 (and therefore transferases 1-1 and 1-2) was not detected. The most conspicuous difference is the presence in lung of a new form, eluting at pH 8.7, which is not detected in rat liver. This isoenzyme (transferase "pH 8.7") is characterized by its low apparent subunit Mr and high efficiency in the conjugation of glutathione with anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, considered the ultimate carcinogen of benzo(a)-pyrene.  相似文献   

19.
The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.4 A resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild-type hGSTP1-1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild-type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S-nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix alpha2 of hGST P1-1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild-type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix alpha2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S-nitrosylation of Cys47 by GSNO is a likely physiological scenario.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号