首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1–induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase–deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1–induced Rac1 activation. Hsc70 was required for netrin-1–mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

2.
During embryonic development, tangentially migrating precerebellar neurons emit a leading process and then translocate their nuclei inside it (nucleokinesis). Netrin 1 (also known as netrin-1) acts as a chemoattractant factor for neurophilic migration of precerebellar neurons (PCN) both in vivo and in vitro. In the present work, we analyzed Rho GTPases that could direct axon outgrowth and/or nuclear migration. We show that the expression pattern of Rho GTPases in developing PCN is consistent with their involvement in the migration of PCN from the rhombic lips. We report that pharmacological inhibition of Rho enhances axon outgrowth of PCN and prevents nuclei migration toward a netrin 1 source, whereas inhibition of Rac and Cdc42 sub-families impair neurite outgrowth of PCN without affecting migration. We show, through pharmacological inhibition, that Rho signaling directs neurophilic migration through Rock activation. Altogether, our results indicate that Rho/Rock acts on signaling pathways favoring nuclear translocation during tangential migration of PCN. Thus, axon extension and nuclear migration of PCN in response to netrin 1 are not strictly dependent processes because: (1) distinct small GTPases are involved; (2) axon extension can occur when migration is blocked; and (3) migration can occur when axon outgrowth is impaired.  相似文献   

3.
The precerebellar nuclei (PCN) originate from the rhombic lip, a germinal neuroepithelium adjacent to the roof plate of the fourth ventricle. We first report here that, in chicken, the Brn3a-expressing postmitotic medullary cells that produce the inferior olive (ION, the source of cerebellar climbing fibres) originate from a dorso-ventral domain roughly coinciding with the hindbrain vestibular column. Whereas Foxd3 expression labels the whole mature ION but is only detected in a subpopulation of ION neuroblasts initiating their migration, we report that Brn3a allows the visualization of the whole population of ION neurons from the very beginning of their migration. We show that Brn3a-positive neurons migrate tangentially ventralwards through a characteristic dorso-ventral double submarginal stream. Cath1 expressing progenitors lying just dorsal to the ION origin correlated dorso-ventral topography with the prospective cochlear column (caudal to it) and generate precerebellar nuclei emitting mossy-fiber cerebellar afferents. We used the chick-quail chimaera technique with homotopic grafts at HH10 to determine the precise fate map of ION precursors across the caudal cryptorhombomeric subdivisions of the medullary hindbrain (r8-r11). We demonstrate that each crypto-rhombomere contributes to two lamellae of the ION, while each ION sub-nucleus originates from at least two contiguous crypto-rhombomeres. We then questioned how rhombomere identity is related to the plasticity of cell type specification in the dorsal hindbrain. The potential plasticity of ectopically HH10 grafted ION progenitors to change their original fate in alternative rostrocaudal environments was examined. Heterotopic grafts from the presumptive ION territory to the pontine region (r4-r5) caused a change of fate, since the migrated derivatives adopted a pontine phenotype. The reverse experiment caused pontine progenitors to produce derivatives appropriately integrated into the ION complex. Grafts of ION progenitor domains to myelomeres (my) 2-3 also showed complete fate regulation, reproducing spinal cord-like structures, whereas the reverse experiment revealed the inability of my2-3 to generate ION cell types. This was not the case with more caudal, relatively less specified myelomeres (my5-6). Interestingly, when heterotopically grafted cells are integrated dorsally, they do not change their phenotype. Our results support the hypothesis that positional information present in the hindbrain and spinal cord at early neural tube stages controls the specific fates of ventrally migrating PCN precursors.  相似文献   

4.
Netrins are bifunctional: they attract some axons and repel others. Netrin receptors of the Deleted in Colorectal Cancer (DCC) family are implicated in attraction and those of the UNC5 family in repulsion, but genetic evidence also suggests involvement of the DCC protein UNC-40 in some cases of repulsion. To test whether these proteins form a receptor complex for repulsion, we studied the attractive responses of Xenopus spinal axons to netrin-1, which are mediated by DCC. We show that attraction is converted to repulsion by expression of UNC5 proteins in these cells, that this repulsion requires DCC function, that the UNC5 cytoplasmic domain is sufficient to effect the conversion, and that repulsion can be initiated by netrin-1 binding to either UNC5 or DCC. The isolated cytoplasmic domains of DCC and UNC5 proteins interact directly, but this interaction is repressed in the context of the full-length proteins. We provide evidence that netrin-1 triggers the formation of a receptor complex of DCC and UNC5 proteins and simultaneously derepresses the interaction between their cytoplasmic domains, thereby converting DCC-mediated attraction to UNC5/DCC-mediated repulsion.  相似文献   

5.
Long distance cell migration occurs throughout the developing CNS, but the underlying cellular and molecular mechanisms are poorly understood. We show that the directed circumferential migration of basilar pontine neurons from their origin in the neuroepithelium of the dorsal hindbrain to the ventral midline involves the extension of long (>1 mm) leading processes, which marker analyses suggest are molecularly distinct from axons. In vivo analysis of knockout mice implicates the axonal chemoattractant netrin-1, functioning via its receptor Deleted in Colorectal Cancer (DCC), in attracting the leading process to the ventral midline. Direct evidence for this chemoattractant mechanism is provided, using explant cultures and time-lapse analysis in vitro. Our results demonstrate the attraction of migrating neurons in the mammalian brain by an axon guidance molecule and the chemotactic responsiveness of their leading processes.  相似文献   

6.
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr2622 by the Src kinase Fyn. Though the phospho-null mutant TrioY2622F retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. TrioY2622F impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not TrioY2622F. Together, these findings demonstrate that TrioY2622 phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.  相似文献   

7.
Down syndrome cell adhesion molecule (DSCAM) acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development. However, the signaling mechanisms of netrin-DSCAM remain unclear. Here we report that AMP-activated protein kinase (AMPK) interacts with DSCAM through its γ subunit, but does not interact with DCC (deleted in colorectal cancer), another major receptor for netrin-1. Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK. Both AMPK mutant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth. Together, these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Our study uncovers a previously unknown component, AMPK, in netrin-DSCAM signaling pathway.  相似文献   

8.
More than 10 years after its initial discovery, netrin-1 - the first described chimioattractive molecule controlling the guidance of the commissural axons - has recently known a unsuspected wave of interest because of its implication in the development of the nervous system but also, more recently, fot its role in angiogenesis and tumorigenesis. Because, of a series of recent publications on netrin-1 signaling, we propose here to describe the recent insight in netrin-1 signaling via its main receptor DCC (deleted in colorectal cancer), and the recent discovery that netrin controls the assymetric distribution of beta-actin in the growth cone. Thus, it seems that netrin-1, but also the neurotrophic factor BDNF, controls acute growth cone responses such as collapse and turning by the regulation of localized protein translation, such as beta-actin. This process involves both transport of beta-actin mRNA, bound to Vg1RBP, to specific locations, and mRNA translation upon stimulation by local activation of the translation initiation regulator eIF-4E-binding protein 1. Indeed, Netrin-1 induces the movement of Vg1RBP granules into filopodia, and triggers a polarized increase in beta-actin translation on the near side of the growth cone before growth cone turning. The binding of BDNF to its receptor Trk has a similar effect for growth cone attraction, althought it is differentially regulated. Thus, this asymetrically synthesized beta-actin may direct actin polymerization and consequently the migration of the growth cone toward the cue.  相似文献   

9.
Growth cone response to the bifunctional guidance cue netrin-1 is regulated by the activity of intracellular signaling intermediates such as protein kinase C-alpha (PKCα) and adenylyl cyclase. Among the diverse cellular events these enzymes regulate is receptor trafficking. Netrin-1, itself, may govern the activity of these signaling intermediates, thereby regulating axonal responses to itself. Alternatively, other ligands, such as activators of G protein-coupled receptors, may regulate responses to netrin-1 by governing these signaling intermediates. Here, we investigate the mechanisms controlling activation of PKCα and the subsequent downstream regulation of cell surface UNC5A receptors. We report that activation of adenosine receptors by adenosine analogs, or activation of the putative netrin-1 receptor, the G protein-coupled receptor adenosine A2b receptor (A2bR) results in PKCα-dependent removal of UNC5A from the cell surface. This decrease in cell surface UNC5A reduces the number of growth cones that collapse in response to netrin-1 and converts repulsion to attraction. We show these A2bR-mediated alterations in axonal response are not because of netrin-1 because netrin-1 neither binds A2bR, as assayed by protein overlay, nor stimulates PKCα-dependent UNC5A surface loss. Our results demonstrate that netrin-1-independent A2bR signaling governs the responsiveness of a neuron to netrin-1 by regulating the levels of cell surface UNC5A receptor.  相似文献   

10.
The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

11.
Netrin-1 acts as a survival factor via its receptors UNC5H and DCC   总被引:12,自引:0,他引:12  
The membrane receptors DCC and UNC5H have been shown to be crucial for axon guidance and neuronal migration by acting as receptors for netrin-1. DCC has also been proposed as a dependence receptor inducing apoptosis in cells that are beyond netrin-1 availability. Here we show that the netrin-1 receptors UNC5H (UNC5H1, UNC5H2, UNC5H3) also act as dependence receptors. UNC5H receptors induce apoptosis, but this effect is blocked in the presence of netrin-1. Moreover, we demonstrate that UNC5H receptors are cleaved in vitro by caspase in their intracellular domains. This cleavage may lead to the exposure of a fragment encompassing a death domain required for cell death induction in vivo. Finally, we present evidence that during development of the nervous system, the presence of netrin-1 is crucial to maintain survival of UNC5H- and DCC-expressing neurons, especially in the ventricular zone of the brainstem. Altogether, these results argue for a role of netrin-1 during the development of the nervous system, not only as a guidance cue but as a survival factor via its receptors DCC and UNC5H.  相似文献   

12.
13.
Neuronal migration is required for the establishment of specific neural structures, such as layers and nuclei. Neurons migrate along specific migratory routes toward their final destinations, sometimes across long distances. However, the cellular and molecular interactions that control neuronal migration are largely unknown. Here, we examined the mechanism underlying the transmedian migration of precerebellar neurons using a flat whole-mount preparation of the rat embryo. These neurons were initially attracted by the floor plate (FP) at the ventral midline. However, after crossing the midline, they lost their responsiveness to the FP and became attracted by the alar plate (AP). Although the loss of responsiveness to FP cues was caused by an encounter of migrating cells with the FP, the gain of responsiveness to AP cues occurred irrespective of their encounter with the FP. These results identify a crucial change in the response of migrating cells to attractive guidance cues during the transmedian migration of precerebellar neurons.  相似文献   

14.
The receptor Deleted in Colorectal Cancer (DCC) mediates the attractive response of axons to the guidance cue netrin-1 during development. On netrin-1 stimulation, DCC is phosphorylated and induces the assembly of signaling complexes within the growth cone, leading to activation of cytoskeleton regulators, namely the GTPases Rac1 and Cdc42. The molecular mechanisms that link netrin-1/DCC to the actin machinery remain unclear. In this study we seek to demonstrate that the actin-binding proteins ezrin-radixin-moesin (ERM) are effectors of netrin-1/DCC signaling in embryonic cortical neurons. We show that ezrin associates with DCC in a netrin-1-dependent manner. We demonstrate that netrin-1/DCC induces ERM phosphorylation and activation and that the phosphorylation of DCC is required in that context. Moreover, Src kinases and RhoA/Rho kinase activities mediate netrin-1-induced ERM phosphorylation in neurons. We also observed that phosphorylated ERM proteins accumulate in growth cone filopodia, where they colocalize with DCC upon netrin-1 stimulation. Finally, we show that loss of ezrin expression in cortical neurons significantly decreases axon outgrowth induced by netrin-1. Together, our findings demonstrate that netrin-1 induces the formation of an activated ERM/DCC complex in growth cone filopodia, which is required for netrin-1-dependent cortical axon outgrowth.  相似文献   

15.
Netrin-1 is a member of the laminin-like protein family and was initially identified as a potent chemotactic molecule involved in axonal guidance and cell migration during embryonic development. Many studies have focused on the non-neural effects of netrin-1, and the results revealed that netrin-1 may be extensively involved in the regulation of angiogenesis, inflammation, tissue remodeling, and cancer. The pathogenic or protective effect of netrin-1 suggests that it may be a potential therapeutic target in multiple diseases. Netrin-1 plays different roles by interacting with its receptors, such as deleted in colorectal cancer (DCC)/neogenin and the uncoordinated-5 homolog family members (UNC5). Interestingly, contradictory actions in certain physiological pathways serve to highlight its manifold and often opposite effects on numerous physiological and pathophysiological processes. Netrin-1 regulates inflammation and leukocyte infiltration, suggesting roles for netrin-1 in the immune response. In this study, we review recent advances in the understanding of netrin-1 and its receptors in many inflammatory diseases and look forward to the bioavailability of netrin-1 for the future.  相似文献   

16.
Neuronal populations destined to form several precerebellar nuclei are generated by the rhombic lip in the caudal hindbrain. These immature neurons gather into the olivary and the superficial migratory streams and migrate tangentially around the hindbrain to reach their final position. We focus on the cells of the superficial stream that migrate ventrally, cross the midline and form the lateral reticular (LRN) and external cuneate (ECN) nuclei. The cells of the superficial steam are preceded by long leading processes; in the dorsal neural tube, they migrate in close apposition to each other and form distinct chains, whereas they disperse and follow Tuj-1 immunoreactive axons on reaching the ventral hindbrain. This suggests that, in the superficial stream, neuronal migration combines both homotypic and heterotypic mechanisms. We also show that the adhesion molecule TAG-1 is expressed by the migrating cells. Blocking TAG-1 function results in alterations in the superficial migration, indicating that TAG-1 is involved in the superficial migration. Other members of the immunoglobulin superfamily and known ligands of TAG-1 are also expressed in the region of the migration but are not involved in the migration. These findings provide evidence that the TAG-1 protein is involved as a contact-dependent signal guiding not only axonal outgrowth but also cell migration.  相似文献   

17.
A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle-dependent linkage of cell-autonomous and non-autonomous mechanisms. During S to G2 progression, the microtubule-associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2-phase by altering microtubule organization. Thus, Tpx2 links cell-cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S-phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1-phase nuclei depends on a displacement effect by G2-phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.  相似文献   

18.
Wen Z  Guirland C  Ming GL  Zheng JQ 《Neuron》2004,43(6):835-846
Axon pathfinding depends on attractive and repulsive turning of growth cones to extracellular cues. Localized cytosolic Ca2+ signals are known to mediate the bidirectional responses, but downstream mechanisms remain elusive. Here, we report that calcium-calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) phosphatase provide a switch-like mechanism to control the direction of Ca(2+)-dependent growth cone turning. A relatively large local Ca2+ elevation preferentially activates CaMKII to induce attraction, while a modest local Ca2+ signal predominantly acts through CaN and phosphatase-1 (PP1) to produce repulsion. The resting level of intracellular Ca2+ concentrations also affects CaMKII/CaN operation: a normal baseline allows distinct turning responses to different local Ca2+ signals, while a low baseline favors CaN-PP1 activation for repulsion. Moreover, the cAMP pathway negatively regulates CaN-PP1 signaling to inhibit repulsion. Finally, CaMKII/CaN-PP1 also mediates netrin-1 guidance. Together, these findings establish a complex Ca2+ mechanism that targets the balance of CaMKII/CaN-PP1 activation to control distinct growth cone responses.  相似文献   

19.
Conventional and electromyogram (EMG) radio telemetry studies have documented occurrence of tailrace attraction and residency, and associated energy cost, for migratory wild Atlantic at a power plant on the Exploits River, insular Newfoundland, Canada. All fish demonstrated some degree of tailrace attraction and turbine discharge was the primary factor resulting in ‘false attraction’. In 2002, residency times were generally less than 1 h, although some fish demonstrated residency between 71 and 118 h. In 2004, after plant refurbishing, fish took from 6 to 11 days to reach the power plant and remained in the tailrace area from 3 to 12 days. Frequent entrances into the tailraces indicated fish were demonstrating a searching behaviour to find the upstream migration route. In 2003 and 2004, EMG data were collected from 3 fish in each year migrating to, and past, the tailraces. An Energy Index was calculated integrating EMG signal and time spent at each location to estimate potential energetic cost. Relatively high-energy expenditure was associated with tailrace attraction and residency in both years. In 2003, fish spent highest energy at the lowest tailrace (first encountered in their migration) while in 2004, there were also high-energy costs associated with a new generating unit. In both years, high EMGs both just below and above the power plant suggested these reaches were arduous and difficult to pass.  相似文献   

20.
Drosophila embryogenesis is initiated by a series of syncytial mitotic divisions. The first nine of these divisions are internal, and are accompanied by two temporally distinct nuclear movements that lead to the formation of a syncytial blastoderm with a uniform monolayer of cortical nuclei. The first of these movements, which we term axial expansion, occurs during division cycles 4-6 and distributes nuclei in a hollow ellipsoid underlying the cortex. This is followed by cortical migration, during cycles 7-10, which places the nuclei in a uniform monolayer at the cortex. Here we report that these two movements differ in their geometry, velocity, cell-cycle dependence, and protein synthesis requirement. We therefore conclude that axial expansion and cortical migration are mechanistically distinct, amplifying a similar conclusion based on pharmacological data (Zalokar and Erk, 1976). We have examined microtubule organization during cortical migration and find that a network of interdigitating microtubules connects the migrating nuclei. These anti-parallel microtubule arrays are observed between migrating nuclei and yolk nuclei located deeper in the embryo. These arrays are present during nuclear movement but break down when the nuclei are not moving. We propose that cortical migration is driven by microtubule-dependent forces that repel adjacent nuclei, leading to an expansion of the nuclear ellipsoid established by axial expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号